Developing a CT radiomics-based model for assessing split renal function using machine learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s11604-025-01786-6
Purpose This study aims to investigate whether non-contrast computed tomography radiomics can effectively reflect split renal function and to develop a radiomics model for its assessment. Materials and methods This retrospective study included kidneys from the study center and split them into training (70%) and testing (30%) sets. Renal dynamic imaging was used as the reference standard for measuring split renal function. Based on chronic kidney disease staging, kidneys were categorized into three groups according to glomerular filtration rate: > 45 ml/min/1.73 m 2 , 30–45 ml/min/1.73 m 2 , and < 30 ml/min/1.73 m 2 .Features were selected based on feature importance ranking from a tree model, and a random forest radiomics model was built. Results A total of 543 kidneys were included, with 381 in the training set and 162 in the testing set. In the training set, 16 features identified as most important for distinguishing between the groups were ultimately included to develop the random forest model. The model demonstrated good discriminatory ability in the testing set. The AUC for the > 45 ml/min/1.73 m 2 , 30–45 ml/min/1.73 m 2 , and < 30 ml/min/1.73 m 2 categories were 0.859 (95% CI 0.804–0.910), 0.679 (95% CI 0.589–0.760), and 0.901 (95% CI 0.848–0.946), respectively. The calibration curves for the kidneys in each group closely align with the diagonal, with Hosmer–Lemeshow test P -values of 0.124, 0.241, and 0.199 for the three groups, respectively (all P > 0.05). The decision curve analysis confirmed the radiomics model's clinical utility, demonstrating significantly higher net benefit than both treat-all and treat-none strategies at clinically relevant probability thresholds: 1–69% and 71–75% for the > 45 ml/min/1.73 m 2 group, 15-d50% for the 30–45 ml/min/1.73 m 2 group, and 0–99% for the < 30 ml/min/1.73 m 2 group. Conclusion Non-contrast computed tomography radiomics can effectively reflect split renal function information, and the model developed based on it can accurately assess split renal function, holding great potential for clinical application.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11604-025-01786-6
- https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdf
- OA Status
- hybrid
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411000467
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411000467Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11604-025-01786-6Digital Object Identifier
- Title
-
Developing a CT radiomics-based model for assessing split renal function using machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Yihua Zhan, Junjiong Zheng, Xutao Chen, Yushu Chen, Chao Fang, Cong Lai, Menghua Dai, Zhikai Wu, Han Wu, Taihui Yu, Jian Huang, Hao YuList of authors in order
- Landing page
-
https://doi.org/10.1007/s11604-025-01786-6Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdfDirect OA link when available
- Concepts
-
Radiomics, Computer science, Function (biology), Artificial intelligence, Machine learning, Renal function, Medical physics, Medicine, Internal medicine, Evolutionary biology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411000467 |
|---|---|
| doi | https://doi.org/10.1007/s11604-025-01786-6 |
| ids.doi | https://doi.org/10.1007/s11604-025-01786-6 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40459698 |
| ids.openalex | https://openalex.org/W4411000467 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012189 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Retrospective Studies |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D014057 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Tomography, X-Ray Computed |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008297 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Male |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D005260 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Female |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008875 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Middle Aged |
| mesh[7].qualifier_ui | Q000000981 |
| mesh[7].descriptor_ui | D007668 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | diagnostic imaging |
| mesh[7].descriptor_name | Kidney |
| mesh[8].qualifier_ui | Q000503 |
| mesh[8].descriptor_ui | D007668 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | physiopathology |
| mesh[8].descriptor_name | Kidney |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000368 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Aged |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005919 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Glomerular Filtration Rate |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000328 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Adult |
| mesh[12].qualifier_ui | Q000000981 |
| mesh[12].descriptor_ui | D051436 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnostic imaging |
| mesh[12].descriptor_name | Renal Insufficiency, Chronic |
| mesh[13].qualifier_ui | Q000503 |
| mesh[13].descriptor_ui | D051436 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | physiopathology |
| mesh[13].descriptor_name | Renal Insufficiency, Chronic |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D007677 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Kidney Function Tests |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000097188 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Radiomics |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D012189 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Retrospective Studies |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D014057 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Tomography, X-Ray Computed |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D008297 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Male |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D005260 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Female |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008875 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Middle Aged |
| mesh[23].qualifier_ui | Q000000981 |
| mesh[23].descriptor_ui | D007668 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnostic imaging |
| mesh[23].descriptor_name | Kidney |
| mesh[24].qualifier_ui | Q000503 |
| mesh[24].descriptor_ui | D007668 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | physiopathology |
| mesh[24].descriptor_name | Kidney |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000368 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Aged |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D005919 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Glomerular Filtration Rate |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000328 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Adult |
| mesh[28].qualifier_ui | Q000000981 |
| mesh[28].descriptor_ui | D051436 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | diagnostic imaging |
| mesh[28].descriptor_name | Renal Insufficiency, Chronic |
| mesh[29].qualifier_ui | Q000503 |
| mesh[29].descriptor_ui | D051436 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | physiopathology |
| mesh[29].descriptor_name | Renal Insufficiency, Chronic |
| mesh[30].qualifier_ui | Q000379 |
| mesh[30].descriptor_ui | D007677 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | methods |
| mesh[30].descriptor_name | Kidney Function Tests |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D000097188 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Radiomics |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000069550 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Machine Learning |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D012189 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Retrospective Studies |
| mesh[35].qualifier_ui | Q000379 |
| mesh[35].descriptor_ui | D014057 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | methods |
| mesh[35].descriptor_name | Tomography, X-Ray Computed |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D008297 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Male |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D005260 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Female |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D008875 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Middle Aged |
| mesh[39].qualifier_ui | Q000000981 |
| mesh[39].descriptor_ui | D007668 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | diagnostic imaging |
| mesh[39].descriptor_name | Kidney |
| mesh[40].qualifier_ui | Q000503 |
| mesh[40].descriptor_ui | D007668 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | physiopathology |
| mesh[40].descriptor_name | Kidney |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000368 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Aged |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D005919 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Glomerular Filtration Rate |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D000328 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Adult |
| mesh[44].qualifier_ui | Q000000981 |
| mesh[44].descriptor_ui | D051436 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | diagnostic imaging |
| mesh[44].descriptor_name | Renal Insufficiency, Chronic |
| mesh[45].qualifier_ui | Q000503 |
| mesh[45].descriptor_ui | D051436 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | physiopathology |
| mesh[45].descriptor_name | Renal Insufficiency, Chronic |
| mesh[46].qualifier_ui | Q000379 |
| mesh[46].descriptor_ui | D007677 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | methods |
| mesh[46].descriptor_name | Kidney Function Tests |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D000097188 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Radiomics |
| type | article |
| title | Developing a CT radiomics-based model for assessing split renal function using machine learning |
| awards[0].id | https://openalex.org/G7922007546 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82200844 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6342199679 |
| awards[1].funder_id | https://openalex.org/F4320337111 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2514050000201 |
| awards[1].funder_display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| biblio.issue | 9 |
| biblio.volume | 43 |
| biblio.last_page | 1530 |
| biblio.first_page | 1520 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T11885 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | MRI in cancer diagnosis |
| topics[2].id | https://openalex.org/T12067 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Renal and Vascular Pathologies |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320337111 |
| funders[1].ror | |
| funders[1].display_name | Basic and Applied Basic Research Foundation of Guangdong Province |
| is_xpac | False |
| apc_list.value | 2990 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3790 |
| apc_paid.value | 2990 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3790 |
| concepts[0].id | https://openalex.org/C2778559731 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7346811294555664 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[0].display_name | Radiomics |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6335623860359192 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C14036430 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5028645396232605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[2].display_name | Function (biology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4885050058364868 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4242889881134033 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C159641895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4122352600097656 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q108377937 |
| concepts[5].display_name | Renal function |
| concepts[6].id | https://openalex.org/C19527891 |
| concepts[6].level | 1 |
| concepts[6].score | 0.383569598197937 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[6].display_name | Medical physics |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3052825331687927 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11540326476097107 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C78458016 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[9].display_name | Evolutionary biology |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/radiomics |
| keywords[0].score | 0.7346811294555664 |
| keywords[0].display_name | Radiomics |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6335623860359192 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/function |
| keywords[2].score | 0.5028645396232605 |
| keywords[2].display_name | Function (biology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4885050058364868 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4242889881134033 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/renal-function |
| keywords[5].score | 0.4122352600097656 |
| keywords[5].display_name | Renal function |
| keywords[6].id | https://openalex.org/keywords/medical-physics |
| keywords[6].score | 0.383569598197937 |
| keywords[6].display_name | Medical physics |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.3052825331687927 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.11540326476097107 |
| keywords[8].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1007/s11604-025-01786-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S73373472 |
| locations[0].source.issn | 1867-1071, 1867-108X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1867-1071 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Japanese Journal of Radiology |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Japanese Journal of Radiology |
| locations[0].landing_page_url | https://doi.org/10.1007/s11604-025-01786-6 |
| locations[1].id | pmid:40459698 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Japanese journal of radiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40459698 |
| locations[2].id | pmh:oai:europepmc.org:11205037 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12397145 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5011258051 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-3347-9764 |
| authorships[0].author.display_name | Yihua Zhan |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[0].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[0].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I157773358 |
| authorships[0].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yihua Zhan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[1].author.id | https://openalex.org/A5071713756 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3594-8961 |
| authorships[1].author.display_name | Junjiong Zheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[1].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[1].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[1].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[1].institutions[1].id | https://openalex.org/I157773358 |
| authorships[1].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Junjiong Zheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[2].author.id | https://openalex.org/A5103259483 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-8435-8166 |
| authorships[2].author.display_name | Xutao Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[2].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[2].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[2].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I157773358 |
| authorships[2].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xutao Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[3].author.id | https://openalex.org/A5003202344 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0731-0813 |
| authorships[3].author.display_name | Yushu Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4387154481 |
| authorships[3].affiliations[0].raw_affiliation_string | The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4387154481 |
| authorships[3].institutions[0].ror | https://ror.org/00xjwyj62 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4387154481 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Eighth Affiliated Hospital of Sun Yat-sen University |
| authorships[3].institutions[1].id | https://openalex.org/I157773358 |
| authorships[3].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Sun Yat-sen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yushu Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China. |
| authorships[4].author.id | https://openalex.org/A5072907589 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1147-807X |
| authorships[4].author.display_name | Chao Fang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[4].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[4].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[4].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[4].institutions[1].id | https://openalex.org/I157773358 |
| authorships[4].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Sun Yat-sen University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chao Fang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[5].author.id | https://openalex.org/A5047016139 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4729-104X |
| authorships[5].author.display_name | Cong Lai |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[5].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[5].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[5].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[5].institutions[1].id | https://openalex.org/I157773358 |
| authorships[5].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Sun Yat-sen University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cong Lai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[6].author.id | https://openalex.org/A5108326240 |
| authorships[6].author.orcid | https://orcid.org/0009-0006-4626-8397 |
| authorships[6].author.display_name | Menghua Dai |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[6].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[6].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[6].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[6].institutions[1].id | https://openalex.org/I157773358 |
| authorships[6].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Sun Yat-sen University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mingzhou Dai |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[7].author.id | https://openalex.org/A5101133972 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Zhikai Wu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[7].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[7].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[7].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I157773358 |
| authorships[7].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Sun Yat-sen University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhikai Wu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. |
| authorships[8].author.id | https://openalex.org/A5101532844 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6464-6538 |
| authorships[8].author.display_name | Han Wu |
| authorships[8].countries | HK |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210086892 |
| authorships[8].affiliations[0].raw_affiliation_string | The Education University of Hong Kong, Hong Kong, China. |
| authorships[8].institutions[0].id | https://openalex.org/I4210086892 |
| authorships[8].institutions[0].ror | https://ror.org/000t0f062 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210086892 |
| authorships[8].institutions[0].country_code | HK |
| authorships[8].institutions[0].display_name | Education University of Hong Kong |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Han Wu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | The Education University of Hong Kong, Hong Kong, China. |
| authorships[9].author.id | https://openalex.org/A5030974005 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Taihui Yu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[9].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| authorships[9].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[9].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[9].institutions[1].id | https://openalex.org/I157773358 |
| authorships[9].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Sun Yat-sen University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Taihui Yu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| authorships[10].author.id | https://openalex.org/A5101824449 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-2602-4345 |
| authorships[10].author.display_name | Jian Huang |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[10].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| authorships[10].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[10].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[10].institutions[1].id | https://openalex.org/I157773358 |
| authorships[10].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[10].institutions[1].country_code | CN |
| authorships[10].institutions[1].display_name | Sun Yat-sen University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jian Huang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| authorships[11].author.id | https://openalex.org/A5102988983 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-3428-8757 |
| authorships[11].author.display_name | Hao Yu |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I157773358, https://openalex.org/I4210097354 |
| authorships[11].affiliations[0].raw_affiliation_string | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| authorships[11].institutions[0].id | https://openalex.org/I4210097354 |
| authorships[11].institutions[0].ror | https://ror.org/01px77p81 |
| authorships[11].institutions[0].type | healthcare |
| authorships[11].institutions[0].lineage | https://openalex.org/I4210097354 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | Sun Yat-sen Memorial Hospital |
| authorships[11].institutions[1].id | https://openalex.org/I157773358 |
| authorships[11].institutions[1].ror | https://ror.org/0064kty71 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I157773358 |
| authorships[11].institutions[1].country_code | CN |
| authorships[11].institutions[1].display_name | Sun Yat-sen University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Hao Yu |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Developing a CT radiomics-based model for assessing split renal function using machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W3000891326, https://openalex.org/W4205100762, https://openalex.org/W2559998622, https://openalex.org/W2605851261, https://openalex.org/W2734724112, https://openalex.org/W2582997534, https://openalex.org/W3009210156, https://openalex.org/W4388577230, https://openalex.org/W4385221818, https://openalex.org/W3030796519 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s11604-025-01786-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S73373472 |
| best_oa_location.source.issn | 1867-1071, 1867-108X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1867-1071 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Japanese Journal of Radiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Japanese Journal of Radiology |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11604-025-01786-6 |
| primary_location.id | doi:10.1007/s11604-025-01786-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S73373472 |
| primary_location.source.issn | 1867-1071, 1867-108X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1867-1071 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Japanese Journal of Radiology |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11604-025-01786-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Japanese Journal of Radiology |
| primary_location.landing_page_url | https://doi.org/10.1007/s11604-025-01786-6 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2155698107, https://openalex.org/W3024672471, https://openalex.org/W6805893276, https://openalex.org/W2118797425, https://openalex.org/W3160110762, https://openalex.org/W2097815017, https://openalex.org/W2315138000, https://openalex.org/W4399895809, https://openalex.org/W3006104185, https://openalex.org/W6773877953, https://openalex.org/W3175762528, https://openalex.org/W4281652117, https://openalex.org/W4406690098, https://openalex.org/W4392777592, https://openalex.org/W2026616100, https://openalex.org/W2767128594, https://openalex.org/W4319346741, https://openalex.org/W4394843391, https://openalex.org/W4399043319, https://openalex.org/W2052358273, https://openalex.org/W2145632027, https://openalex.org/W2402599050, https://openalex.org/W6921437392, https://openalex.org/W1904470192, https://openalex.org/W2750307006, https://openalex.org/W4205877715, https://openalex.org/W3021842026, https://openalex.org/W4205629872 |
| referenced_works_count | 28 |
| abstract_inverted_index., | 85, 90, 180, 185 |
| abstract_inverted_index.2 | 84, 89, 96, 179, 184, 191, 276, 284, 294 |
| abstract_inverted_index.A | 118 |
| abstract_inverted_index.P | 225, 238 |
| abstract_inverted_index.a | 21, 106, 110 |
| abstract_inverted_index.m | 83, 88, 95, 178, 183, 190, 275, 283, 293 |
| abstract_inverted_index.16 | 141 |
| abstract_inverted_index.30 | 93, 188, 291 |
| abstract_inverted_index.45 | 81, 176, 273 |
| abstract_inverted_index.CI | 196, 200, 205 |
| abstract_inverted_index.In | 137 |
| abstract_inverted_index.as | 54, 144 |
| abstract_inverted_index.at | 262 |
| abstract_inverted_index.in | 127, 133, 167, 214 |
| abstract_inverted_index.it | 314 |
| abstract_inverted_index.of | 120, 227 |
| abstract_inverted_index.on | 64, 101, 313 |
| abstract_inverted_index.to | 5, 19, 76, 155 |
| abstract_inverted_index.162 | 132 |
| abstract_inverted_index.381 | 126 |
| abstract_inverted_index.543 | 121 |
| abstract_inverted_index.AUC | 172 |
| abstract_inverted_index.The | 161, 171, 208, 241 |
| abstract_inverted_index.and | 18, 28, 39, 45, 91, 109, 131, 186, 202, 230, 259, 268, 286, 308 |
| abstract_inverted_index.can | 12, 301, 315 |
| abstract_inverted_index.for | 24, 58, 147, 173, 211, 232, 270, 279, 288, 324 |
| abstract_inverted_index.its | 25 |
| abstract_inverted_index.net | 254 |
| abstract_inverted_index.set | 130 |
| abstract_inverted_index.the | 36, 55, 128, 134, 138, 150, 157, 168, 174, 212, 220, 233, 246, 271, 280, 289, 309 |
| abstract_inverted_index.was | 52, 115 |
| abstract_inverted_index.> | 80, 175, 239, 272 |
| abstract_inverted_index.< | 92, 187, 290 |
| abstract_inverted_index.(95% | 195, 199, 204 |
| abstract_inverted_index.(all | 237 |
| abstract_inverted_index.This | 2, 30 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.both | 257 |
| abstract_inverted_index.each | 215 |
| abstract_inverted_index.from | 35, 105 |
| abstract_inverted_index.good | 164 |
| abstract_inverted_index.into | 42, 72 |
| abstract_inverted_index.most | 145 |
| abstract_inverted_index.set, | 140 |
| abstract_inverted_index.set. | 136, 170 |
| abstract_inverted_index.test | 224 |
| abstract_inverted_index.than | 256 |
| abstract_inverted_index.them | 41 |
| abstract_inverted_index.tree | 107 |
| abstract_inverted_index.used | 53 |
| abstract_inverted_index.were | 70, 98, 123, 152, 193 |
| abstract_inverted_index.with | 125, 219, 222 |
| abstract_inverted_index.(30%) | 47 |
| abstract_inverted_index.(70%) | 44 |
| abstract_inverted_index.0.199 | 231 |
| abstract_inverted_index.0.679 | 198 |
| abstract_inverted_index.0.859 | 194 |
| abstract_inverted_index.0.901 | 203 |
| abstract_inverted_index.Based | 63 |
| abstract_inverted_index.Renal | 49 |
| abstract_inverted_index.align | 218 |
| abstract_inverted_index.based | 100, 312 |
| abstract_inverted_index.curve | 243 |
| abstract_inverted_index.great | 322 |
| abstract_inverted_index.group | 216 |
| abstract_inverted_index.model | 23, 114, 162, 310 |
| abstract_inverted_index.rate: | 79 |
| abstract_inverted_index.renal | 16, 61, 305, 319 |
| abstract_inverted_index.sets. | 48 |
| abstract_inverted_index.split | 15, 40, 60, 304, 318 |
| abstract_inverted_index.study | 3, 32, 37 |
| abstract_inverted_index.three | 73, 234 |
| abstract_inverted_index.total | 119 |
| abstract_inverted_index.0.05). | 240 |
| abstract_inverted_index.0.124, | 228 |
| abstract_inverted_index.0.241, | 229 |
| abstract_inverted_index.assess | 317 |
| abstract_inverted_index.built. | 116 |
| abstract_inverted_index.center | 38 |
| abstract_inverted_index.curves | 210 |
| abstract_inverted_index.forest | 112, 159 |
| abstract_inverted_index.group, | 277, 285 |
| abstract_inverted_index.group. | 295 |
| abstract_inverted_index.groups | 74, 151 |
| abstract_inverted_index.higher | 253 |
| abstract_inverted_index.kidney | 66 |
| abstract_inverted_index.model, | 108 |
| abstract_inverted_index.model. | 160 |
| abstract_inverted_index.random | 111, 158 |
| abstract_inverted_index.-values | 226 |
| abstract_inverted_index.0–99% | 287 |
| abstract_inverted_index.15-d50% | 278 |
| abstract_inverted_index.1–69% | 267 |
| abstract_inverted_index.30–45 | 86, 181, 281 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 117 |
| abstract_inverted_index.ability | 166 |
| abstract_inverted_index.benefit | 255 |
| abstract_inverted_index.between | 149 |
| abstract_inverted_index.chronic | 65 |
| abstract_inverted_index.closely | 217 |
| abstract_inverted_index.develop | 20, 156 |
| abstract_inverted_index.disease | 67 |
| abstract_inverted_index.dynamic | 50 |
| abstract_inverted_index.feature | 102 |
| abstract_inverted_index.groups, | 235 |
| abstract_inverted_index.holding | 321 |
| abstract_inverted_index.imaging | 51 |
| abstract_inverted_index.kidneys | 34, 69, 122, 213 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.model's | 248 |
| abstract_inverted_index.ranking | 104 |
| abstract_inverted_index.reflect | 14, 303 |
| abstract_inverted_index.testing | 46, 135, 169 |
| abstract_inverted_index.whether | 7 |
| abstract_inverted_index.71–75% | 269 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 244 |
| abstract_inverted_index.clinical | 249, 325 |
| abstract_inverted_index.computed | 9, 298 |
| abstract_inverted_index.decision | 242 |
| abstract_inverted_index.features | 142 |
| abstract_inverted_index.function | 17, 306 |
| abstract_inverted_index.included | 33, 154 |
| abstract_inverted_index.relevant | 264 |
| abstract_inverted_index.selected | 99 |
| abstract_inverted_index.staging, | 68 |
| abstract_inverted_index.standard | 57 |
| abstract_inverted_index.training | 43, 129, 139 |
| abstract_inverted_index.utility, | 250 |
| abstract_inverted_index..Features | 97 |
| abstract_inverted_index.Materials | 27 |
| abstract_inverted_index.according | 75 |
| abstract_inverted_index.confirmed | 245 |
| abstract_inverted_index.developed | 311 |
| abstract_inverted_index.diagonal, | 221 |
| abstract_inverted_index.function, | 320 |
| abstract_inverted_index.function. | 62 |
| abstract_inverted_index.important | 146 |
| abstract_inverted_index.included, | 124 |
| abstract_inverted_index.measuring | 59 |
| abstract_inverted_index.potential | 323 |
| abstract_inverted_index.radiomics | 11, 22, 113, 247, 300 |
| abstract_inverted_index.reference | 56 |
| abstract_inverted_index.treat-all | 258 |
| abstract_inverted_index.Conclusion | 296 |
| abstract_inverted_index.accurately | 316 |
| abstract_inverted_index.categories | 192 |
| abstract_inverted_index.clinically | 263 |
| abstract_inverted_index.filtration | 78 |
| abstract_inverted_index.glomerular | 77 |
| abstract_inverted_index.identified | 143 |
| abstract_inverted_index.importance | 103 |
| abstract_inverted_index.strategies | 261 |
| abstract_inverted_index.tomography | 10, 299 |
| abstract_inverted_index.treat-none | 260 |
| abstract_inverted_index.ultimately | 153 |
| abstract_inverted_index.assessment. | 26 |
| abstract_inverted_index.calibration | 209 |
| abstract_inverted_index.categorized | 71 |
| abstract_inverted_index.effectively | 13, 302 |
| abstract_inverted_index.investigate | 6 |
| abstract_inverted_index.ml/min/1.73 | 82, 87, 94, 177, 182, 189, 274, 282, 292 |
| abstract_inverted_index.probability | 265 |
| abstract_inverted_index.thresholds: | 266 |
| abstract_inverted_index.Non-contrast | 297 |
| abstract_inverted_index.application. | 326 |
| abstract_inverted_index.demonstrated | 163 |
| abstract_inverted_index.information, | 307 |
| abstract_inverted_index.non-contrast | 8 |
| abstract_inverted_index.respectively | 236 |
| abstract_inverted_index.demonstrating | 251 |
| abstract_inverted_index.respectively. | 207 |
| abstract_inverted_index.retrospective | 31 |
| abstract_inverted_index.significantly | 252 |
| abstract_inverted_index.discriminatory | 165 |
| abstract_inverted_index.distinguishing | 148 |
| abstract_inverted_index.0.589–0.760), | 201 |
| abstract_inverted_index.0.804–0.910), | 197 |
| abstract_inverted_index.0.848–0.946), | 206 |
| abstract_inverted_index.Hosmer–Lemeshow | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.28948574 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |