Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/app14167314
For several years, a growing interest among numerous researchers and investors in predicting stock price movements has spurred extensive exploration into employing advanced deep learning models. These models aim to develop systems capable of comprehending the stock market’s complex nature. Despite the immense challenge posed by the diverse factors influencing stock price forecasting, there remains a notable lack of research focused on identifying the essential feature set for accurate predictions. In this study, we propose a Dynamic Feature Selection System (DFSS) to predict stock prices across the 10 major industries, as classified by the FnGuide Industry Classification Standard (FICS) in South Korea. We apply 16 feature selection algorithms from filter, wrapper, embedded, and ensemble categories. Subsequently, we adjust the settings of industry-specific index data to evaluate the model’s performance and robustness over time. Our comprehensive results identify the optimal feature sets that significantly impact stock prices within each sector at specific points in time. By analyzing the inclusion ratios and significance of the optimal feature set by category, we gain insights into the proportion of feature classes and their importance. This analysis ensures the interpretability and reliability of our model. The proposed methodology complements existing methods that do not consider changes in the types of variables significantly affecting stock prices over time by dynamically adjusting the input variables used for learning. The primary goal of this study is to enhance active investment strategies by facilitating the creation of diversified portfolios for individual stocks across various sectors, offering robust models and feature sets that consistently demonstrate high performance across industries over time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app14167314
- https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236
- OA Status
- gold
- Cited By
- 1
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401975556
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401975556Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app14167314Digital Object Identifier
- Title
-
Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry SectorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-20Full publication date if available
- Authors
-
Woojung Kim, Jiyoung Jeon, Minwoo Jang, Sanghoe Kim, Hee Soo Lee, SangHyuk Yoo, Jae Joon AhnList of authors in order
- Landing page
-
https://doi.org/10.3390/app14167314Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236Direct OA link when available
- Concepts
-
Business, Stock market, Feature selection, Industrial organization, Computer science, Artificial intelligence, Geography, Context (archaeology), ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401975556 |
|---|---|
| doi | https://doi.org/10.3390/app14167314 |
| ids.doi | https://doi.org/10.3390/app14167314 |
| ids.openalex | https://openalex.org/W4401975556 |
| fwci | 0.9565227 |
| type | article |
| title | Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors |
| awards[0].id | https://openalex.org/G6058342087 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021R1A2C1094211 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 16 |
| biblio.volume | 14 |
| biblio.last_page | 7314 |
| biblio.first_page | 7314 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T11918 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Forecasting Techniques and Applications |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9782999753952026 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C144133560 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5608157515525818 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[0].display_name | Business |
| concepts[1].id | https://openalex.org/C2780299701 |
| concepts[1].level | 3 |
| concepts[1].score | 0.44069209694862366 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[1].display_name | Stock market |
| concepts[2].id | https://openalex.org/C148483581 |
| concepts[2].level | 2 |
| concepts[2].score | 0.42313069105148315 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[2].display_name | Feature selection |
| concepts[3].id | https://openalex.org/C40700 |
| concepts[3].level | 1 |
| concepts[3].score | 0.339815229177475 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1411783 |
| concepts[3].display_name | Industrial organization |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3344660997390747 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.20486152172088623 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.11696115136146545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C166957645 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[8].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/business |
| keywords[0].score | 0.5608157515525818 |
| keywords[0].display_name | Business |
| keywords[1].id | https://openalex.org/keywords/stock-market |
| keywords[1].score | 0.44069209694862366 |
| keywords[1].display_name | Stock market |
| keywords[2].id | https://openalex.org/keywords/feature-selection |
| keywords[2].score | 0.42313069105148315 |
| keywords[2].display_name | Feature selection |
| keywords[3].id | https://openalex.org/keywords/industrial-organization |
| keywords[3].score | 0.339815229177475 |
| keywords[3].display_name | Industrial organization |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3344660997390747 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.20486152172088623 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.11696115136146545 |
| keywords[6].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/app14167314 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app14167314 |
| locations[1].id | pmh:oai:doaj.org/article:f2be798c576d4344b5152acf32044864 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 14, Iss 16, p 7314 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f2be798c576d4344b5152acf32044864 |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/14/16/7314/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app14167314 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5025451768 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Woojung Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I193775966 |
| authorships[0].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Yonsei University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Woojung Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5111526144 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jiyoung Jeon |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I193775966 |
| authorships[1].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Yonsei University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiyoung Jeon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5061217813 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9127-8945 |
| authorships[2].author.display_name | Minwoo Jang |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I193775966 |
| authorships[2].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Minwoo Jang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5023031727 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9828-2178 |
| authorships[3].author.display_name | Sanghoe Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I193775966 |
| authorships[3].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Yonsei University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sanghoe Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5076077242 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4674-5430 |
| authorships[4].author.display_name | Hee Soo Lee |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28777354 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Business Administration, Sejong University, Seoul 05006, Republic of Korea |
| authorships[4].institutions[0].id | https://openalex.org/I28777354 |
| authorships[4].institutions[0].ror | https://ror.org/00aft1q37 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28777354 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Sejong University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Heesoo Lee |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Business Administration, Sejong University, Seoul 05006, Republic of Korea |
| authorships[5].author.id | https://openalex.org/A5027484374 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2087-4093 |
| authorships[5].author.display_name | SangHyuk Yoo |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[5].institutions[0].id | https://openalex.org/I193775966 |
| authorships[5].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Yonsei University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sanghyuk Yoo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Industrial Engineering, Yonsei University, Seoul 03722, Republic of Korea |
| authorships[6].author.id | https://openalex.org/A5045345496 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7974-8027 |
| authorships[6].author.display_name | Jae Joon Ahn |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[6].affiliations[0].raw_affiliation_string | Division of Data Science, Yonsei University, Wonju 26493, Republic of Korea |
| authorships[6].institutions[0].id | https://openalex.org/I193775966 |
| authorships[6].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Yonsei University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jaejoon Ahn |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Division of Data Science, Yonsei University, Wonju 26493, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Developing a Dynamic Feature Selection System (DFSS) for Stock Market Prediction: Application to the Korean Industry Sectors |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2192670466, https://openalex.org/W3009514698 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app14167314 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app14167314 |
| primary_location.id | doi:10.3390/app14167314 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/14/16/7314/pdf?version=1724127236 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app14167314 |
| publication_date | 2024-08-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3131163544, https://openalex.org/W3009650506, https://openalex.org/W2126831543, https://openalex.org/W6680546309, https://openalex.org/W2087186620, https://openalex.org/W2078282181, https://openalex.org/W2493814989, https://openalex.org/W2783629690, https://openalex.org/W2940897671, https://openalex.org/W6629325184, https://openalex.org/W6816402495, https://openalex.org/W2946805352, https://openalex.org/W3049611042, https://openalex.org/W2994069988, https://openalex.org/W2090036179, https://openalex.org/W4308459632, https://openalex.org/W2903325752, https://openalex.org/W3127053039, https://openalex.org/W1512448514, https://openalex.org/W2899231837, https://openalex.org/W3012443022, https://openalex.org/W2997282513, https://openalex.org/W6765213864, https://openalex.org/W2066795664, https://openalex.org/W2092281935, https://openalex.org/W3002756429, https://openalex.org/W4314446242, https://openalex.org/W2158508433, https://openalex.org/W2888898286, https://openalex.org/W2092939357, https://openalex.org/W2156483112, https://openalex.org/W4253001350, https://openalex.org/W2185735639, https://openalex.org/W3215076255, https://openalex.org/W3005468664, https://openalex.org/W1523646822, https://openalex.org/W2169281690, https://openalex.org/W2911964244, https://openalex.org/W6737947904, https://openalex.org/W2156665896, https://openalex.org/W2605225344, https://openalex.org/W3037824821, https://openalex.org/W2165250079, https://openalex.org/W2071698610, https://openalex.org/W4205848394, https://openalex.org/W2955612236, https://openalex.org/W2962862931, https://openalex.org/W2137841648, https://openalex.org/W4234968553, https://openalex.org/W1491302875 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 3, 55, 75 |
| abstract_inverted_index.10 | 87 |
| abstract_inverted_index.16 | 104 |
| abstract_inverted_index.By | 154 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.We | 102 |
| abstract_inverted_index.as | 90 |
| abstract_inverted_index.at | 149 |
| abstract_inverted_index.by | 45, 92, 166, 212, 233 |
| abstract_inverted_index.do | 197 |
| abstract_inverted_index.in | 11, 99, 152, 201 |
| abstract_inverted_index.is | 227 |
| abstract_inverted_index.of | 33, 58, 120, 161, 174, 187, 204, 224, 237 |
| abstract_inverted_index.on | 61 |
| abstract_inverted_index.to | 29, 81, 124, 228 |
| abstract_inverted_index.we | 73, 116, 168 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.Our | 133 |
| abstract_inverted_index.The | 190, 221 |
| abstract_inverted_index.aim | 28 |
| abstract_inverted_index.and | 9, 112, 129, 159, 177, 185, 249 |
| abstract_inverted_index.for | 67, 219, 240 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.not | 198 |
| abstract_inverted_index.our | 188 |
| abstract_inverted_index.set | 66, 165 |
| abstract_inverted_index.the | 35, 41, 46, 63, 86, 93, 118, 126, 137, 156, 162, 172, 183, 202, 215, 235 |
| abstract_inverted_index.This | 180 |
| abstract_inverted_index.data | 123 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.each | 147 |
| abstract_inverted_index.from | 108 |
| abstract_inverted_index.gain | 169 |
| abstract_inverted_index.goal | 223 |
| abstract_inverted_index.high | 255 |
| abstract_inverted_index.into | 20, 171 |
| abstract_inverted_index.lack | 57 |
| abstract_inverted_index.over | 131, 210, 259 |
| abstract_inverted_index.sets | 140, 251 |
| abstract_inverted_index.that | 141, 196, 252 |
| abstract_inverted_index.this | 71, 225 |
| abstract_inverted_index.time | 211 |
| abstract_inverted_index.used | 218 |
| abstract_inverted_index.South | 100 |
| abstract_inverted_index.These | 26 |
| abstract_inverted_index.among | 6 |
| abstract_inverted_index.apply | 103 |
| abstract_inverted_index.index | 122 |
| abstract_inverted_index.input | 216 |
| abstract_inverted_index.major | 88 |
| abstract_inverted_index.posed | 44 |
| abstract_inverted_index.price | 14, 51 |
| abstract_inverted_index.stock | 13, 36, 50, 83, 144, 208 |
| abstract_inverted_index.study | 226 |
| abstract_inverted_index.their | 178 |
| abstract_inverted_index.there | 53 |
| abstract_inverted_index.time. | 132, 153, 260 |
| abstract_inverted_index.types | 203 |
| abstract_inverted_index.(DFSS) | 80 |
| abstract_inverted_index.(FICS) | 98 |
| abstract_inverted_index.Korea. | 101 |
| abstract_inverted_index.System | 79 |
| abstract_inverted_index.across | 85, 243, 257 |
| abstract_inverted_index.active | 230 |
| abstract_inverted_index.adjust | 117 |
| abstract_inverted_index.impact | 143 |
| abstract_inverted_index.model. | 189 |
| abstract_inverted_index.models | 27, 248 |
| abstract_inverted_index.points | 151 |
| abstract_inverted_index.prices | 84, 145, 209 |
| abstract_inverted_index.ratios | 158 |
| abstract_inverted_index.robust | 247 |
| abstract_inverted_index.sector | 148 |
| abstract_inverted_index.stocks | 242 |
| abstract_inverted_index.study, | 72 |
| abstract_inverted_index.within | 146 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.Despite | 40 |
| abstract_inverted_index.Dynamic | 76 |
| abstract_inverted_index.Feature | 77 |
| abstract_inverted_index.FnGuide | 94 |
| abstract_inverted_index.capable | 32 |
| abstract_inverted_index.changes | 200 |
| abstract_inverted_index.classes | 176 |
| abstract_inverted_index.complex | 38 |
| abstract_inverted_index.develop | 30 |
| abstract_inverted_index.diverse | 47 |
| abstract_inverted_index.enhance | 229 |
| abstract_inverted_index.ensures | 182 |
| abstract_inverted_index.factors | 48 |
| abstract_inverted_index.feature | 65, 105, 139, 164, 175, 250 |
| abstract_inverted_index.filter, | 109 |
| abstract_inverted_index.focused | 60 |
| abstract_inverted_index.growing | 4 |
| abstract_inverted_index.immense | 42 |
| abstract_inverted_index.methods | 195 |
| abstract_inverted_index.models. | 25 |
| abstract_inverted_index.nature. | 39 |
| abstract_inverted_index.notable | 56 |
| abstract_inverted_index.optimal | 138, 163 |
| abstract_inverted_index.predict | 82 |
| abstract_inverted_index.primary | 222 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.remains | 54 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.several | 1 |
| abstract_inverted_index.spurred | 17 |
| abstract_inverted_index.systems | 31 |
| abstract_inverted_index.various | 244 |
| abstract_inverted_index.Industry | 95 |
| abstract_inverted_index.Standard | 97 |
| abstract_inverted_index.accurate | 68 |
| abstract_inverted_index.advanced | 22 |
| abstract_inverted_index.analysis | 181 |
| abstract_inverted_index.consider | 199 |
| abstract_inverted_index.creation | 236 |
| abstract_inverted_index.ensemble | 113 |
| abstract_inverted_index.evaluate | 125 |
| abstract_inverted_index.existing | 194 |
| abstract_inverted_index.identify | 136 |
| abstract_inverted_index.insights | 170 |
| abstract_inverted_index.interest | 5 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.numerous | 7 |
| abstract_inverted_index.offering | 246 |
| abstract_inverted_index.proposed | 191 |
| abstract_inverted_index.research | 59 |
| abstract_inverted_index.sectors, | 245 |
| abstract_inverted_index.settings | 119 |
| abstract_inverted_index.specific | 150 |
| abstract_inverted_index.wrapper, | 110 |
| abstract_inverted_index.Selection | 78 |
| abstract_inverted_index.adjusting | 214 |
| abstract_inverted_index.affecting | 207 |
| abstract_inverted_index.analyzing | 155 |
| abstract_inverted_index.category, | 167 |
| abstract_inverted_index.challenge | 43 |
| abstract_inverted_index.embedded, | 111 |
| abstract_inverted_index.employing | 21 |
| abstract_inverted_index.essential | 64 |
| abstract_inverted_index.extensive | 18 |
| abstract_inverted_index.inclusion | 157 |
| abstract_inverted_index.investors | 10 |
| abstract_inverted_index.learning. | 220 |
| abstract_inverted_index.model’s | 127 |
| abstract_inverted_index.movements | 15 |
| abstract_inverted_index.selection | 106 |
| abstract_inverted_index.variables | 205, 217 |
| abstract_inverted_index.algorithms | 107 |
| abstract_inverted_index.classified | 91 |
| abstract_inverted_index.individual | 241 |
| abstract_inverted_index.industries | 258 |
| abstract_inverted_index.investment | 231 |
| abstract_inverted_index.market’s | 37 |
| abstract_inverted_index.portfolios | 239 |
| abstract_inverted_index.predicting | 12 |
| abstract_inverted_index.proportion | 173 |
| abstract_inverted_index.robustness | 130 |
| abstract_inverted_index.strategies | 232 |
| abstract_inverted_index.categories. | 114 |
| abstract_inverted_index.complements | 193 |
| abstract_inverted_index.demonstrate | 254 |
| abstract_inverted_index.diversified | 238 |
| abstract_inverted_index.dynamically | 213 |
| abstract_inverted_index.exploration | 19 |
| abstract_inverted_index.identifying | 62 |
| abstract_inverted_index.importance. | 179 |
| abstract_inverted_index.industries, | 89 |
| abstract_inverted_index.influencing | 49 |
| abstract_inverted_index.methodology | 192 |
| abstract_inverted_index.performance | 128, 256 |
| abstract_inverted_index.reliability | 186 |
| abstract_inverted_index.researchers | 8 |
| abstract_inverted_index.consistently | 253 |
| abstract_inverted_index.facilitating | 234 |
| abstract_inverted_index.forecasting, | 52 |
| abstract_inverted_index.predictions. | 69 |
| abstract_inverted_index.significance | 160 |
| abstract_inverted_index.Subsequently, | 115 |
| abstract_inverted_index.comprehending | 34 |
| abstract_inverted_index.comprehensive | 134 |
| abstract_inverted_index.significantly | 142, 206 |
| abstract_inverted_index.Classification | 96 |
| abstract_inverted_index.interpretability | 184 |
| abstract_inverted_index.industry-specific | 121 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5076077242, https://openalex.org/A5045345496 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I193775966, https://openalex.org/I28777354 |
| citation_normalized_percentile.value | 0.72281308 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |