Development and validation of a clinical prediction model for in-hospital mortality of severe pneumonia based on machine learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fphar.2025.1660893
Objective We aimed to develop an interpretable model to predict the mortality risk for severe pneumonia patients. Methods The study retrospectively employed data from severe pneumonia patients at two hospitals as the training set for the model development. Patients with severe pneumonia admitted from the same two hospitals were prospectively included as the test set for the model evaluation. A total of 115 candidate features were extracted based on clinical relevance and existing literature. The least absolute shrinkage and selection operator (LASSO) regression was applied to select features for the establishment of five models: logistic regression (LR), support vector machine (SVM), decision tree (DT), random forest (RF) and extreme gradient boosting (XGBoost). The performance of the models was assessed from discrimination, calibration and clinical practicability. The optimal model was screened out, and SHapley Additive exPlanation (SHAP) method was used to explain. Results A total of 323 eligible patients with severe pneumonia were enrolled, including 226 patients in the training set and 97 in test set. In comparison to the other four models, the XGBoost model demonstrated the third highest area under the receiver operating characteristic (AUROC), along with optimal calibration and clinical practicability. The SHAP value of the XGBoost model indicated that the application of retention catheterization was identified as the most important influential predictor in the model, followed by oral Chinese herbal decoction, blood urea nitrogen (BUN) level, age, application of tracheotomy, complication of septic shock, and TCM syndrome (pathogenic qi falling into and prostration syndrome). Conclusion Older age, increased BUN level, complication of septic shock, tracheotomy application, retention catheterization application, oral Chinese herbal decoction, and TCM syndrome (pathogenic qi falling into and prostration syndrome) may be potential risk factors that affect mortality in severe pneumonia, while application of tracheotomy and oral Chinese herbal decoction were associated with reduced mortality. The XGBoost model exhibits superior overall performance in predicting hospital mortality risk for severe pneumonia, greater than traditional scoring systems such as Pneumonia Severity Index (PSI), Sequential Organ Failure Assessment (SOFA), and Acute Physiology and Chronic Health Evaluation II (APACHE II), which assists clinicians in prognostic assessment, resulting in improved therapeutic strategies and optimal resource allocation for patients.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.3389/fphar.2025.1660893
- https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdf
- OA Status
- gold
- References
- 51
- OpenAlex ID
- https://openalex.org/W7106647533
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106647533Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fphar.2025.1660893Digital Object Identifier
- Title
-
Development and validation of a clinical prediction model for in-hospital mortality of severe pneumonia based on machine learningWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-26Full publication date if available
- Authors
-
Kai Xie, Xiajin Huang, Zhen Li, Wenjing Yin, Xiaoxuan He, Xinyu Miao, Haifeng WangList of authors in order
- Landing page
-
https://doi.org/10.3389/fphar.2025.1660893Publisher landing page
- PDF URL
-
https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdfDirect OA link when available
- Concepts
-
Medicine, Pneumonia, Logistic regression, Machine learning, Decision tree, Receiver operating characteristic, Random forest, Artificial intelligence, Test set, Support vector machine, Training set, Intensive care medicine, Calibration, Clinical trial, Emergency medicine, Gradient boosting, Mortality rate, Area under the curve, Predictive modelling, Test data, Erythrocyte sedimentation rate, Decision tree learning, Regression, Complication, Bacterial pneumonia, Prospective cohort study, Confidence interval, Medical record, Data set, Regression analysis, Clinical Practice, Decision tree modelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
51Number of works referenced by this work
Full payload
| id | https://openalex.org/W7106647533 |
|---|---|
| doi | https://doi.org/10.3389/fphar.2025.1660893 |
| ids.doi | https://doi.org/10.3389/fphar.2025.1660893 |
| ids.openalex | https://openalex.org/W7106647533 |
| fwci | 0.0 |
| type | article |
| title | Development and validation of a clinical prediction model for in-hospital mortality of severe pneumonia based on machine learning |
| biblio.issue | |
| biblio.volume | 16 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7400871515274048 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2777914695 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7013612985610962 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12192 |
| concepts[1].display_name | Pneumonia |
| concepts[2].id | https://openalex.org/C151956035 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6928853988647461 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[2].display_name | Logistic regression |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6435903906822205 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C84525736 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6109417080879211 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[4].display_name | Decision tree |
| concepts[5].id | https://openalex.org/C58471807 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6001462340354919 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[5].display_name | Receiver operating characteristic |
| concepts[6].id | https://openalex.org/C169258074 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5482680797576904 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[6].display_name | Random forest |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5181940793991089 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C169903167 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4985783100128174 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[8].display_name | Test set |
| concepts[9].id | https://openalex.org/C12267149 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4247065484523773 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[9].display_name | Support vector machine |
| concepts[10].id | https://openalex.org/C51632099 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41976049542427063 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[10].display_name | Training set |
| concepts[11].id | https://openalex.org/C177713679 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39711520075798035 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[11].display_name | Intensive care medicine |
| concepts[12].id | https://openalex.org/C165838908 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3692891299724579 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[12].display_name | Calibration |
| concepts[13].id | https://openalex.org/C535046627 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3571033179759979 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q30612 |
| concepts[13].display_name | Clinical trial |
| concepts[14].id | https://openalex.org/C194828623 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32786229252815247 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[14].display_name | Emergency medicine |
| concepts[15].id | https://openalex.org/C70153297 |
| concepts[15].level | 3 |
| concepts[15].score | 0.31828221678733826 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[15].display_name | Gradient boosting |
| concepts[16].id | https://openalex.org/C179755657 |
| concepts[16].level | 2 |
| concepts[16].score | 0.30957913398742676 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q58702 |
| concepts[16].display_name | Mortality rate |
| concepts[17].id | https://openalex.org/C76318530 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3002246022224426 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q16833590 |
| concepts[17].display_name | Area under the curve |
| concepts[18].id | https://openalex.org/C45804977 |
| concepts[18].level | 2 |
| concepts[18].score | 0.2998868227005005 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[18].display_name | Predictive modelling |
| concepts[19].id | https://openalex.org/C16910744 |
| concepts[19].level | 2 |
| concepts[19].score | 0.28925657272338867 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7705759 |
| concepts[19].display_name | Test data |
| concepts[20].id | https://openalex.org/C2778143017 |
| concepts[20].level | 2 |
| concepts[20].score | 0.2875189185142517 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q111208 |
| concepts[20].display_name | Erythrocyte sedimentation rate |
| concepts[21].id | https://openalex.org/C5481197 |
| concepts[21].level | 3 |
| concepts[21].score | 0.2852194011211395 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[21].display_name | Decision tree learning |
| concepts[22].id | https://openalex.org/C83546350 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2835230529308319 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[22].display_name | Regression |
| concepts[23].id | https://openalex.org/C81182388 |
| concepts[23].level | 2 |
| concepts[23].score | 0.27758508920669556 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q353963 |
| concepts[23].display_name | Complication |
| concepts[24].id | https://openalex.org/C2776345407 |
| concepts[24].level | 3 |
| concepts[24].score | 0.27147573232650757 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q3776920 |
| concepts[24].display_name | Bacterial pneumonia |
| concepts[25].id | https://openalex.org/C188816634 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2705264985561371 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q2113324 |
| concepts[25].display_name | Prospective cohort study |
| concepts[26].id | https://openalex.org/C44249647 |
| concepts[26].level | 2 |
| concepts[26].score | 0.26878175139427185 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[26].display_name | Confidence interval |
| concepts[27].id | https://openalex.org/C195910791 |
| concepts[27].level | 2 |
| concepts[27].score | 0.26700323820114136 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[27].display_name | Medical record |
| concepts[28].id | https://openalex.org/C58489278 |
| concepts[28].level | 2 |
| concepts[28].score | 0.2611958682537079 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[28].display_name | Data set |
| concepts[29].id | https://openalex.org/C152877465 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2564874589443207 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[29].display_name | Regression analysis |
| concepts[30].id | https://openalex.org/C2779974597 |
| concepts[30].level | 2 |
| concepts[30].score | 0.2545206546783447 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q28448986 |
| concepts[30].display_name | Clinical Practice |
| concepts[31].id | https://openalex.org/C56289965 |
| concepts[31].level | 3 |
| concepts[31].score | 0.2534453570842743 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q5249246 |
| concepts[31].display_name | Decision tree model |
| keywords[0].id | https://openalex.org/keywords/pneumonia |
| keywords[0].score | 0.7013612985610962 |
| keywords[0].display_name | Pneumonia |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.6928853988647461 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/decision-tree |
| keywords[2].score | 0.6109417080879211 |
| keywords[2].display_name | Decision tree |
| keywords[3].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[3].score | 0.6001462340354919 |
| keywords[3].display_name | Receiver operating characteristic |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5482680797576904 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/test-set |
| keywords[5].score | 0.4985783100128174 |
| keywords[5].display_name | Test set |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.4247065484523773 |
| keywords[6].display_name | Support vector machine |
| keywords[7].id | https://openalex.org/keywords/training-set |
| keywords[7].score | 0.41976049542427063 |
| keywords[7].display_name | Training set |
| keywords[8].id | https://openalex.org/keywords/calibration |
| keywords[8].score | 0.3692891299724579 |
| keywords[8].display_name | Calibration |
| keywords[9].id | https://openalex.org/keywords/clinical-trial |
| keywords[9].score | 0.3571033179759979 |
| keywords[9].display_name | Clinical trial |
| language | |
| locations[0].id | doi:10.3389/fphar.2025.1660893 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S132108250 |
| locations[0].source.issn | 1663-9812 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1663-9812 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Pharmacology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Pharmacology |
| locations[0].landing_page_url | https://doi.org/10.3389/fphar.2025.1660893 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A1996150313 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8684-0040 |
| authorships[0].author.display_name | Kai Xie |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[0].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[0].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210155511 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210155511 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | First Affiliated Hospital of Henan University |
| authorships[0].institutions[1].id | https://openalex.org/I4210144860 |
| authorships[0].institutions[1].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210144860 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kai Xie |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiajin Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[1].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[1].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210144860 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210144860 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[1].institutions[1].id | https://openalex.org/I4210155511 |
| authorships[1].institutions[1].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210155511 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | First Affiliated Hospital of Henan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiajin Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[2].author.id | https://openalex.org/A2086285432 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5087-0328 |
| authorships[2].author.display_name | Zhen Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[2].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[2].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210155511 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210155511 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | First Affiliated Hospital of Henan University |
| authorships[2].institutions[1].id | https://openalex.org/I4210144860 |
| authorships[2].institutions[1].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210144860 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhen Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[3].author.id | https://openalex.org/A2125400653 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9412-7114 |
| authorships[3].author.display_name | Wenjing Yin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[3].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[3].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210155511 |
| authorships[3].institutions[0].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210155511 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | First Affiliated Hospital of Henan University |
| authorships[3].institutions[1].id | https://openalex.org/I4210144860 |
| authorships[3].institutions[1].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[3].institutions[1].type | healthcare |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210144860 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenjing Yin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[4].author.id | https://openalex.org/A2154866647 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2685-5010 |
| authorships[4].author.display_name | Xiaoxuan He |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[4].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[4].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210155511 |
| authorships[4].institutions[0].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210155511 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | First Affiliated Hospital of Henan University |
| authorships[4].institutions[1].id | https://openalex.org/I4210144860 |
| authorships[4].institutions[1].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210144860 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiaoxuan He |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[5].author.id | https://openalex.org/A1990755799 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5236-2669 |
| authorships[5].author.display_name | Xinyu Miao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[5].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[5].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210144860 |
| authorships[5].institutions[0].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210144860 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[5].institutions[1].id | https://openalex.org/I4210155511 |
| authorships[5].institutions[1].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210155511 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | First Affiliated Hospital of Henan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xinyu Miao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[6].author.id | https://openalex.org/A2104452532 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5022-0720 |
| authorships[6].author.display_name | Haifeng Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210144860 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210155511 |
| authorships[6].affiliations[1].raw_affiliation_string | Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I4210155511 |
| authorships[6].affiliations[2].raw_affiliation_string | Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210144860 |
| authorships[6].institutions[0].ror | https://ror.org/https://ror.org/059c9vn90 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210144860 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | First Affiliated Hospital of Henan University of Traditional Chinese Medicine |
| authorships[6].institutions[1].id | https://openalex.org/I4210155511 |
| authorships[6].institutions[1].ror | https://ror.org/https://ror.org/0536rsk67 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210155511 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | First Affiliated Hospital of Henan University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Haifeng Wang |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of National Regional TCM (Lung Disease) Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-27T00:00:00 |
| display_name | Development and validation of a clinical prediction model for in-hospital mortality of severe pneumonia based on machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:08:47.144824 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3389/fphar.2025.1660893 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S132108250 |
| best_oa_location.source.issn | 1663-9812 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1663-9812 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Pharmacology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Pharmacology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fphar.2025.1660893 |
| primary_location.id | doi:10.3389/fphar.2025.1660893 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S132108250 |
| primary_location.source.issn | 1663-9812 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1663-9812 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Pharmacology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://public-pages-files-2025.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1660893/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Pharmacology |
| primary_location.landing_page_url | https://doi.org/10.3389/fphar.2025.1660893 |
| publication_date | 2025-11-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3197081063, https://openalex.org/W2514842683, https://openalex.org/W4224235939, https://openalex.org/W2973032093, https://openalex.org/W2597207133, https://openalex.org/W3034132365, https://openalex.org/W3136637725, https://openalex.org/W4402072444, https://openalex.org/W3184140733, https://openalex.org/W2104661713, https://openalex.org/W2900983684, https://openalex.org/W2556299404, https://openalex.org/W2320270386, https://openalex.org/W3092849554, https://openalex.org/W4389337720, https://openalex.org/W2947392039, https://openalex.org/W2898834825, https://openalex.org/W4313400242, https://openalex.org/W2234868363, https://openalex.org/W4318306327, https://openalex.org/W4293242440, https://openalex.org/W2117274814, https://openalex.org/W4206382916, https://openalex.org/W3216084586, https://openalex.org/W4386170374, https://openalex.org/W2810743655, https://openalex.org/W4212805508, https://openalex.org/W2977322360, https://openalex.org/W4401793844, https://openalex.org/W4412980587, https://openalex.org/W2140964565, https://openalex.org/W4385950089, https://openalex.org/W2150765167, https://openalex.org/W2161169086, https://openalex.org/W2558741329, https://openalex.org/W4386747284, https://openalex.org/W3217700731, https://openalex.org/W4402901128, https://openalex.org/W2890840903, https://openalex.org/W1898928487, https://openalex.org/W3102902405, https://openalex.org/W3142804561, https://openalex.org/W2135688996, https://openalex.org/W4387222690, https://openalex.org/W4401332184, https://openalex.org/W4382201982, https://openalex.org/W6903511965, https://openalex.org/W4390666187, https://openalex.org/W4408775558, https://openalex.org/W3205192181, https://openalex.org/W4385397141 |
| referenced_works_count | 51 |
| abstract_inverted_index.A | 59, 142 |
| abstract_inverted_index.97 | 161 |
| abstract_inverted_index.II | 339 |
| abstract_inverted_index.In | 165 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.an | 5 |
| abstract_inverted_index.as | 30, 51, 209, 322 |
| abstract_inverted_index.at | 27 |
| abstract_inverted_index.be | 277 |
| abstract_inverted_index.by | 219 |
| abstract_inverted_index.in | 156, 162, 215, 284, 308, 345, 349 |
| abstract_inverted_index.of | 61, 91, 114, 144, 196, 204, 231, 234, 254, 289 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.qi | 241, 270 |
| abstract_inverted_index.to | 3, 8, 85, 139, 167 |
| abstract_inverted_index.115 | 62 |
| abstract_inverted_index.226 | 154 |
| abstract_inverted_index.323 | 145 |
| abstract_inverted_index.BUN | 251 |
| abstract_inverted_index.TCM | 238, 267 |
| abstract_inverted_index.The | 18, 74, 112, 125, 193, 301 |
| abstract_inverted_index.and | 71, 78, 107, 122, 131, 160, 190, 237, 244, 266, 273, 291, 332, 335, 353 |
| abstract_inverted_index.for | 13, 34, 55, 88, 313, 357 |
| abstract_inverted_index.may | 276 |
| abstract_inverted_index.set | 33, 54, 159 |
| abstract_inverted_index.the | 10, 31, 35, 44, 52, 56, 89, 115, 157, 168, 172, 176, 181, 197, 202, 210, 216 |
| abstract_inverted_index.two | 28, 46 |
| abstract_inverted_index.was | 83, 117, 128, 137, 207 |
| abstract_inverted_index.(RF) | 106 |
| abstract_inverted_index.II), | 341 |
| abstract_inverted_index.SHAP | 194 |
| abstract_inverted_index.age, | 229, 249 |
| abstract_inverted_index.area | 179 |
| abstract_inverted_index.data | 22 |
| abstract_inverted_index.five | 92 |
| abstract_inverted_index.four | 170 |
| abstract_inverted_index.from | 23, 43, 119 |
| abstract_inverted_index.into | 243, 272 |
| abstract_inverted_index.most | 211 |
| abstract_inverted_index.oral | 220, 262, 292 |
| abstract_inverted_index.out, | 130 |
| abstract_inverted_index.risk | 12, 279, 312 |
| abstract_inverted_index.same | 45 |
| abstract_inverted_index.set. | 164 |
| abstract_inverted_index.such | 321 |
| abstract_inverted_index.test | 53, 163 |
| abstract_inverted_index.than | 317 |
| abstract_inverted_index.that | 201, 281 |
| abstract_inverted_index.tree | 102 |
| abstract_inverted_index.urea | 225 |
| abstract_inverted_index.used | 138 |
| abstract_inverted_index.were | 48, 65, 151, 296 |
| abstract_inverted_index.with | 39, 148, 187, 298 |
| abstract_inverted_index.(BUN) | 227 |
| abstract_inverted_index.(DT), | 103 |
| abstract_inverted_index.(LR), | 96 |
| abstract_inverted_index.Acute | 333 |
| abstract_inverted_index.Index | 325 |
| abstract_inverted_index.Older | 248 |
| abstract_inverted_index.Organ | 328 |
| abstract_inverted_index.aimed | 2 |
| abstract_inverted_index.along | 186 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.blood | 224 |
| abstract_inverted_index.least | 75 |
| abstract_inverted_index.model | 7, 36, 57, 127, 174, 199, 303 |
| abstract_inverted_index.other | 169 |
| abstract_inverted_index.study | 19 |
| abstract_inverted_index.third | 177 |
| abstract_inverted_index.total | 60, 143 |
| abstract_inverted_index.under | 180 |
| abstract_inverted_index.value | 195 |
| abstract_inverted_index.which | 342 |
| abstract_inverted_index.while | 287 |
| abstract_inverted_index.(PSI), | 326 |
| abstract_inverted_index.(SHAP) | 135 |
| abstract_inverted_index.(SVM), | 100 |
| abstract_inverted_index.Health | 337 |
| abstract_inverted_index.affect | 282 |
| abstract_inverted_index.forest | 105 |
| abstract_inverted_index.herbal | 222, 264, 294 |
| abstract_inverted_index.level, | 228, 252 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.model, | 217 |
| abstract_inverted_index.models | 116 |
| abstract_inverted_index.random | 104 |
| abstract_inverted_index.select | 86 |
| abstract_inverted_index.septic | 235, 255 |
| abstract_inverted_index.severe | 14, 24, 40, 149, 285, 314 |
| abstract_inverted_index.shock, | 236, 256 |
| abstract_inverted_index.vector | 98 |
| abstract_inverted_index.(APACHE | 340 |
| abstract_inverted_index.(LASSO) | 81 |
| abstract_inverted_index.(SOFA), | 331 |
| abstract_inverted_index.Chinese | 221, 263, 293 |
| abstract_inverted_index.Chronic | 336 |
| abstract_inverted_index.Failure | 329 |
| abstract_inverted_index.Methods | 17 |
| abstract_inverted_index.Results | 141 |
| abstract_inverted_index.SHapley | 132 |
| abstract_inverted_index.XGBoost | 173, 198, 302 |
| abstract_inverted_index.applied | 84 |
| abstract_inverted_index.assists | 343 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.extreme | 108 |
| abstract_inverted_index.factors | 280 |
| abstract_inverted_index.falling | 242, 271 |
| abstract_inverted_index.greater | 316 |
| abstract_inverted_index.highest | 178 |
| abstract_inverted_index.machine | 99 |
| abstract_inverted_index.models, | 171 |
| abstract_inverted_index.models: | 93 |
| abstract_inverted_index.optimal | 126, 188, 354 |
| abstract_inverted_index.overall | 306 |
| abstract_inverted_index.predict | 9 |
| abstract_inverted_index.reduced | 299 |
| abstract_inverted_index.scoring | 319 |
| abstract_inverted_index.support | 97 |
| abstract_inverted_index.systems | 320 |
| abstract_inverted_index.(AUROC), | 185 |
| abstract_inverted_index.Additive | 133 |
| abstract_inverted_index.Patients | 38 |
| abstract_inverted_index.Severity | 324 |
| abstract_inverted_index.absolute | 76 |
| abstract_inverted_index.admitted | 42 |
| abstract_inverted_index.assessed | 118 |
| abstract_inverted_index.boosting | 110 |
| abstract_inverted_index.clinical | 69, 123, 191 |
| abstract_inverted_index.decision | 101 |
| abstract_inverted_index.eligible | 146 |
| abstract_inverted_index.employed | 21 |
| abstract_inverted_index.exhibits | 304 |
| abstract_inverted_index.existing | 72 |
| abstract_inverted_index.explain. | 140 |
| abstract_inverted_index.features | 64, 87 |
| abstract_inverted_index.followed | 218 |
| abstract_inverted_index.gradient | 109 |
| abstract_inverted_index.hospital | 310 |
| abstract_inverted_index.improved | 350 |
| abstract_inverted_index.included | 50 |
| abstract_inverted_index.logistic | 94 |
| abstract_inverted_index.nitrogen | 226 |
| abstract_inverted_index.operator | 80 |
| abstract_inverted_index.patients | 26, 147, 155 |
| abstract_inverted_index.receiver | 182 |
| abstract_inverted_index.resource | 355 |
| abstract_inverted_index.screened | 129 |
| abstract_inverted_index.superior | 305 |
| abstract_inverted_index.syndrome | 239, 268 |
| abstract_inverted_index.training | 32, 158 |
| abstract_inverted_index.Objective | 0 |
| abstract_inverted_index.Pneumonia | 323 |
| abstract_inverted_index.candidate | 63 |
| abstract_inverted_index.decoction | 295 |
| abstract_inverted_index.enrolled, | 152 |
| abstract_inverted_index.extracted | 66 |
| abstract_inverted_index.hospitals | 29, 47 |
| abstract_inverted_index.important | 212 |
| abstract_inverted_index.including | 153 |
| abstract_inverted_index.increased | 250 |
| abstract_inverted_index.indicated | 200 |
| abstract_inverted_index.mortality | 11, 283, 311 |
| abstract_inverted_index.operating | 183 |
| abstract_inverted_index.patients. | 16, 358 |
| abstract_inverted_index.pneumonia | 15, 25, 41, 150 |
| abstract_inverted_index.potential | 278 |
| abstract_inverted_index.predictor | 214 |
| abstract_inverted_index.relevance | 70 |
| abstract_inverted_index.resulting | 348 |
| abstract_inverted_index.retention | 205, 259 |
| abstract_inverted_index.selection | 79 |
| abstract_inverted_index.shrinkage | 77 |
| abstract_inverted_index.syndrome) | 275 |
| abstract_inverted_index.(XGBoost). | 111 |
| abstract_inverted_index.Assessment | 330 |
| abstract_inverted_index.Conclusion | 247 |
| abstract_inverted_index.Evaluation | 338 |
| abstract_inverted_index.Physiology | 334 |
| abstract_inverted_index.Sequential | 327 |
| abstract_inverted_index.allocation | 356 |
| abstract_inverted_index.associated | 297 |
| abstract_inverted_index.clinicians | 344 |
| abstract_inverted_index.comparison | 166 |
| abstract_inverted_index.decoction, | 223, 265 |
| abstract_inverted_index.identified | 208 |
| abstract_inverted_index.mortality. | 300 |
| abstract_inverted_index.pneumonia, | 286, 315 |
| abstract_inverted_index.predicting | 309 |
| abstract_inverted_index.prognostic | 346 |
| abstract_inverted_index.regression | 82, 95 |
| abstract_inverted_index.strategies | 352 |
| abstract_inverted_index.syndrome). | 246 |
| abstract_inverted_index.(pathogenic | 240, 269 |
| abstract_inverted_index.application | 203, 230, 288 |
| abstract_inverted_index.assessment, | 347 |
| abstract_inverted_index.calibration | 121, 189 |
| abstract_inverted_index.evaluation. | 58 |
| abstract_inverted_index.exPlanation | 134 |
| abstract_inverted_index.influential | 213 |
| abstract_inverted_index.literature. | 73 |
| abstract_inverted_index.performance | 113, 307 |
| abstract_inverted_index.prostration | 245, 274 |
| abstract_inverted_index.therapeutic | 351 |
| abstract_inverted_index.tracheotomy | 257, 290 |
| abstract_inverted_index.traditional | 318 |
| abstract_inverted_index.application, | 258, 261 |
| abstract_inverted_index.complication | 233, 253 |
| abstract_inverted_index.demonstrated | 175 |
| abstract_inverted_index.development. | 37 |
| abstract_inverted_index.tracheotomy, | 232 |
| abstract_inverted_index.establishment | 90 |
| abstract_inverted_index.interpretable | 6 |
| abstract_inverted_index.prospectively | 49 |
| abstract_inverted_index.characteristic | 184 |
| abstract_inverted_index.catheterization | 206, 260 |
| abstract_inverted_index.discrimination, | 120 |
| abstract_inverted_index.practicability. | 124, 192 |
| abstract_inverted_index.retrospectively | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |