Development and Validation of a Deep Learning Model for Prediction of Severe Outcomes in Suspected COVID-19 Infection Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2103.11269
COVID-19 patient triaging with predictive outcome of the patients upon first present to emergency department (ED) is crucial for improving patient prognosis, as well as better hospital resources management and cross-infection control. We trained a deep feature fusion model to predict patient outcomes, where the model inputs were EHR data including demographic information, co-morbidities, vital signs and laboratory measurements, plus patient's CXR images. The model output was patient outcomes defined as the most insensitive oxygen therapy required. For patients without CXR images, we employed Random Forest method for the prediction. Predictive risk scores for COVID-19 severe outcomes ("CO-RISK" score) were derived from model output and evaluated on the testing dataset, as well as compared to human performance. The study's dataset (the "MGB COVID Cohort") was constructed from all patients presenting to the Mass General Brigham (MGB) healthcare system from March 1st to June 1st, 2020. ED visits with incomplete or erroneous data were excluded. Patients with no test order for COVID or confirmed negative test results were excluded. Patients under the age of 15 were also excluded. Finally, electronic health record (EHR) data from a total of 11060 COVID-19 confirmed or suspected patients were used in this study. Chest X-ray (CXR) images were also collected from each patient if available. Results show that CO-RISK score achieved area under the Curve (AUC) of predicting MV/death (i.e. severe outcomes) in 24 hours of 0.95, and 0.92 in 72 hours on the testing dataset. The model shows superior performance to the commonly used risk scores in ED (CURB-65 and MEWS). Comparing with physician's decisions, CO-RISK score has demonstrated superior performance to human in making ICU/floor decisions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2103.11269
- https://arxiv.org/pdf/2103.11269
- OA Status
- green
- Cited By
- 4
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3137711675
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3137711675Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2103.11269Digital Object Identifier
- Title
-
Development and Validation of a Deep Learning Model for Prediction of Severe Outcomes in Suspected COVID-19 InfectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-03-21Full publication date if available
- Authors
-
Buch, Aoxiao Zhong, Li X, Rockenbach Mabc, Wu Depei, Ren H, Jiahui Guan, Andrew S. Liteplo, Sayon Dutta, Ittai Dayan, Li QList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.11269Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2103.11269Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2103.11269Direct OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 2019-20 coronavirus outbreak, Virology, Model validation, Deep learning, Artificial intelligence, Medicine, Computer science, Data science, Internal medicine, Outbreak, Infectious disease (medical specialty), DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 2, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3137711675 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2103.11269 |
| ids.doi | https://doi.org/10.48550/arxiv.2103.11269 |
| ids.mag | 3137711675 |
| ids.openalex | https://openalex.org/W3137711675 |
| fwci | |
| type | preprint |
| title | Development and Validation of a Deep Learning Model for Prediction of Severe Outcomes in Suspected COVID-19 Infection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12574 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2714 |
| topics[2].subfield.display_name | Family Practice |
| topics[2].display_name | Clinical Reasoning and Diagnostic Skills |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7985163927078247 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C3007834351 |
| concepts[1].level | 5 |
| concepts[1].score | 0.5888895988464355 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[1].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[2].id | https://openalex.org/C3006700255 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5300922989845276 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[2].display_name | 2019-20 coronavirus outbreak |
| concepts[3].id | https://openalex.org/C159047783 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4468381404876709 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[3].display_name | Virology |
| concepts[4].id | https://openalex.org/C3019813237 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42999961972236633 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q65089264 |
| concepts[4].display_name | Model validation |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4292401075363159 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3957493007183075 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3561369776725769 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3423728942871094 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C2522767166 |
| concepts[9].level | 1 |
| concepts[9].score | 0.17843005061149597 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[9].display_name | Data science |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13952383399009705 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C116675565 |
| concepts[11].level | 2 |
| concepts[11].score | 0.11852878332138062 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[11].display_name | Outbreak |
| concepts[12].id | https://openalex.org/C524204448 |
| concepts[12].level | 3 |
| concepts[12].score | 0.08123871684074402 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[12].display_name | Infectious disease (medical specialty) |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.06354793906211853 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.7985163927078247 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[1].score | 0.5888895988464355 |
| keywords[1].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[2].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[2].score | 0.5300922989845276 |
| keywords[2].display_name | 2019-20 coronavirus outbreak |
| keywords[3].id | https://openalex.org/keywords/virology |
| keywords[3].score | 0.4468381404876709 |
| keywords[3].display_name | Virology |
| keywords[4].id | https://openalex.org/keywords/model-validation |
| keywords[4].score | 0.42999961972236633 |
| keywords[4].display_name | Model validation |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4292401075363159 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3957493007183075 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.3561369776725769 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3423728942871094 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/data-science |
| keywords[9].score | 0.17843005061149597 |
| keywords[9].display_name | Data science |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.13952383399009705 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/outbreak |
| keywords[11].score | 0.11852878332138062 |
| keywords[11].display_name | Outbreak |
| keywords[12].id | https://openalex.org/keywords/infectious-disease |
| keywords[12].score | 0.08123871684074402 |
| keywords[12].display_name | Infectious disease (medical specialty) |
| keywords[13].id | https://openalex.org/keywords/disease |
| keywords[13].score | 0.06354793906211853 |
| keywords[13].display_name | Disease |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2103.11269 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2103.11269 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2103.11269 |
| locations[1].id | doi:10.48550/arxiv.2103.11269 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2103.11269 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039896233 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Buch |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Buch |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074448454 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7584-5476 |
| authorships[1].author.display_name | Aoxiao Zhong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhong A |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100395648 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1952-3445 |
| authorships[2].author.display_name | Li X |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li X |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109492936 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rockenbach Mabc |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rockenbach Mabc |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113751218 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wu Depei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu D |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5058712662 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ren H |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ren H |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5057195012 |
| authorships[6].author.orcid | https://orcid.org/0009-0003-9412-1232 |
| authorships[6].author.display_name | Jiahui Guan |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Guan J |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5053429312 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3439-6651 |
| authorships[7].author.display_name | Andrew S. Liteplo |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Liteplo A |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5063026397 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0381-6860 |
| authorships[8].author.display_name | Sayon Dutta |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Dutta S |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5055244550 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4024-8740 |
| authorships[9].author.display_name | Ittai Dayan |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Dayan I |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100602935 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-3060-3323 |
| authorships[10].author.display_name | Li Q |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I2801851002 |
| authorships[10].affiliations[0].raw_affiliation_string | Harvard University , |
| authorships[10].institutions[0].id | https://openalex.org/I2801851002 |
| authorships[10].institutions[0].ror | https://ror.org/006v7bf86 |
| authorships[10].institutions[0].type | other |
| authorships[10].institutions[0].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Harvard University Press |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Li Q |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Harvard University , |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2103.11269 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-03-29T00:00:00 |
| display_name | Development and Validation of a Deep Learning Model for Prediction of Severe Outcomes in Suspected COVID-19 Infection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W3036314732, https://openalex.org/W3009669391, https://openalex.org/W4382894326, https://openalex.org/W3198183218, https://openalex.org/W3171943759, https://openalex.org/W3176864053, https://openalex.org/W4206669628, https://openalex.org/W4292098121, https://openalex.org/W3154141118, https://openalex.org/W4388896133 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2103.11269 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2103.11269 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2103.11269 |
| primary_location.id | pmh:oai:arXiv.org:2103.11269 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2103.11269 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2103.11269 |
| publication_date | 2021-03-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3042100171, https://openalex.org/W3012690896, https://openalex.org/W3080627676, https://openalex.org/W2102361557, https://openalex.org/W2785645041, https://openalex.org/W2975793979, https://openalex.org/W3009885589, https://openalex.org/W3082173134, https://openalex.org/W2964182926, https://openalex.org/W2911964244, https://openalex.org/W2019694480, https://openalex.org/W2014224402, https://openalex.org/W2796458509, https://openalex.org/W2064186732, https://openalex.org/W3014524604, https://openalex.org/W2166293125, https://openalex.org/W3042092008, https://openalex.org/W3009906937, https://openalex.org/W3120017613, https://openalex.org/W2169167455 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 34, 184 |
| abstract_inverted_index.15 | 173 |
| abstract_inverted_index.24 | 228 |
| abstract_inverted_index.72 | 235 |
| abstract_inverted_index.ED | 145, 253 |
| abstract_inverted_index.We | 32 |
| abstract_inverted_index.as | 22, 24, 70, 110, 112 |
| abstract_inverted_index.if | 208 |
| abstract_inverted_index.in | 195, 227, 234, 252, 269 |
| abstract_inverted_index.is | 16 |
| abstract_inverted_index.no | 156 |
| abstract_inverted_index.of | 6, 172, 186, 221, 230 |
| abstract_inverted_index.on | 106, 237 |
| abstract_inverted_index.or | 149, 161, 190 |
| abstract_inverted_index.to | 12, 39, 114, 130, 141, 246, 267 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.1st | 140 |
| abstract_inverted_index.CXR | 61, 80 |
| abstract_inverted_index.EHR | 48 |
| abstract_inverted_index.For | 77 |
| abstract_inverted_index.The | 63, 117, 241 |
| abstract_inverted_index.age | 171 |
| abstract_inverted_index.all | 127 |
| abstract_inverted_index.and | 29, 56, 104, 232, 255 |
| abstract_inverted_index.for | 18, 87, 93, 159 |
| abstract_inverted_index.has | 263 |
| abstract_inverted_index.the | 7, 44, 71, 88, 107, 131, 170, 218, 238, 247 |
| abstract_inverted_index.was | 66, 124 |
| abstract_inverted_index."MGB | 121 |
| abstract_inverted_index.(ED) | 15 |
| abstract_inverted_index.(the | 120 |
| abstract_inverted_index.0.92 | 233 |
| abstract_inverted_index.1st, | 143 |
| abstract_inverted_index.June | 142 |
| abstract_inverted_index.Mass | 132 |
| abstract_inverted_index.also | 175, 203 |
| abstract_inverted_index.area | 216 |
| abstract_inverted_index.data | 49, 151, 182 |
| abstract_inverted_index.deep | 35 |
| abstract_inverted_index.each | 206 |
| abstract_inverted_index.from | 101, 126, 138, 183, 205 |
| abstract_inverted_index.most | 72 |
| abstract_inverted_index.plus | 59 |
| abstract_inverted_index.risk | 91, 250 |
| abstract_inverted_index.show | 211 |
| abstract_inverted_index.test | 157, 164 |
| abstract_inverted_index.that | 212 |
| abstract_inverted_index.this | 196 |
| abstract_inverted_index.upon | 9 |
| abstract_inverted_index.used | 194, 249 |
| abstract_inverted_index.well | 23, 111 |
| abstract_inverted_index.were | 47, 99, 152, 166, 174, 193, 202 |
| abstract_inverted_index.with | 3, 147, 155, 258 |
| abstract_inverted_index.(AUC) | 220 |
| abstract_inverted_index.(CXR) | 200 |
| abstract_inverted_index.(EHR) | 181 |
| abstract_inverted_index.(MGB) | 135 |
| abstract_inverted_index.(i.e. | 224 |
| abstract_inverted_index.0.95, | 231 |
| abstract_inverted_index.11060 | 187 |
| abstract_inverted_index.2020. | 144 |
| abstract_inverted_index.COVID | 122, 160 |
| abstract_inverted_index.Chest | 198 |
| abstract_inverted_index.Curve | 219 |
| abstract_inverted_index.March | 139 |
| abstract_inverted_index.X-ray | 199 |
| abstract_inverted_index.first | 10 |
| abstract_inverted_index.hours | 229, 236 |
| abstract_inverted_index.human | 115, 268 |
| abstract_inverted_index.model | 38, 45, 64, 102, 242 |
| abstract_inverted_index.order | 158 |
| abstract_inverted_index.score | 214, 262 |
| abstract_inverted_index.shows | 243 |
| abstract_inverted_index.signs | 55 |
| abstract_inverted_index.total | 185 |
| abstract_inverted_index.under | 169, 217 |
| abstract_inverted_index.vital | 54 |
| abstract_inverted_index.where | 43 |
| abstract_inverted_index.Forest | 85 |
| abstract_inverted_index.MEWS). | 256 |
| abstract_inverted_index.Random | 84 |
| abstract_inverted_index.better | 25 |
| abstract_inverted_index.fusion | 37 |
| abstract_inverted_index.health | 179 |
| abstract_inverted_index.images | 201 |
| abstract_inverted_index.inputs | 46 |
| abstract_inverted_index.making | 270 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.output | 65, 103 |
| abstract_inverted_index.oxygen | 74 |
| abstract_inverted_index.record | 180 |
| abstract_inverted_index.score) | 98 |
| abstract_inverted_index.scores | 92, 251 |
| abstract_inverted_index.severe | 95, 225 |
| abstract_inverted_index.study. | 197 |
| abstract_inverted_index.system | 137 |
| abstract_inverted_index.visits | 146 |
| abstract_inverted_index.Brigham | 134 |
| abstract_inverted_index.CO-RISK | 213, 261 |
| abstract_inverted_index.General | 133 |
| abstract_inverted_index.Results | 210 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.dataset | 119 |
| abstract_inverted_index.defined | 69 |
| abstract_inverted_index.derived | 100 |
| abstract_inverted_index.feature | 36 |
| abstract_inverted_index.images, | 81 |
| abstract_inverted_index.images. | 62 |
| abstract_inverted_index.outcome | 5 |
| abstract_inverted_index.patient | 1, 20, 41, 67, 207 |
| abstract_inverted_index.predict | 40 |
| abstract_inverted_index.present | 11 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.study's | 118 |
| abstract_inverted_index.testing | 108, 239 |
| abstract_inverted_index.therapy | 75 |
| abstract_inverted_index.trained | 33 |
| abstract_inverted_index.without | 79 |
| abstract_inverted_index.(CURB-65 | 254 |
| abstract_inverted_index.COVID-19 | 0, 94, 188 |
| abstract_inverted_index.Cohort") | 123 |
| abstract_inverted_index.Finally, | 177 |
| abstract_inverted_index.MV/death | 223 |
| abstract_inverted_index.Patients | 154, 168 |
| abstract_inverted_index.achieved | 215 |
| abstract_inverted_index.commonly | 248 |
| abstract_inverted_index.compared | 113 |
| abstract_inverted_index.control. | 31 |
| abstract_inverted_index.dataset, | 109 |
| abstract_inverted_index.dataset. | 240 |
| abstract_inverted_index.employed | 83 |
| abstract_inverted_index.hospital | 26 |
| abstract_inverted_index.negative | 163 |
| abstract_inverted_index.outcomes | 68, 96 |
| abstract_inverted_index.patients | 8, 78, 128, 192 |
| abstract_inverted_index.superior | 244, 265 |
| abstract_inverted_index.triaging | 2 |
| abstract_inverted_index.Comparing | 257 |
| abstract_inverted_index.ICU/floor | 271 |
| abstract_inverted_index.collected | 204 |
| abstract_inverted_index.confirmed | 162, 189 |
| abstract_inverted_index.emergency | 13 |
| abstract_inverted_index.erroneous | 150 |
| abstract_inverted_index.evaluated | 105 |
| abstract_inverted_index.excluded. | 153, 167, 176 |
| abstract_inverted_index.improving | 19 |
| abstract_inverted_index.including | 50 |
| abstract_inverted_index.outcomes) | 226 |
| abstract_inverted_index.outcomes, | 42 |
| abstract_inverted_index.patient's | 60 |
| abstract_inverted_index.required. | 76 |
| abstract_inverted_index.resources | 27 |
| abstract_inverted_index.suspected | 191 |
| abstract_inverted_index.("CO-RISK" | 97 |
| abstract_inverted_index.Predictive | 90 |
| abstract_inverted_index.available. | 209 |
| abstract_inverted_index.decisions, | 260 |
| abstract_inverted_index.decisions. | 272 |
| abstract_inverted_index.department | 14 |
| abstract_inverted_index.electronic | 178 |
| abstract_inverted_index.healthcare | 136 |
| abstract_inverted_index.incomplete | 148 |
| abstract_inverted_index.laboratory | 57 |
| abstract_inverted_index.management | 28 |
| abstract_inverted_index.predicting | 222 |
| abstract_inverted_index.predictive | 4 |
| abstract_inverted_index.presenting | 129 |
| abstract_inverted_index.prognosis, | 21 |
| abstract_inverted_index.constructed | 125 |
| abstract_inverted_index.demographic | 51 |
| abstract_inverted_index.insensitive | 73 |
| abstract_inverted_index.performance | 245, 266 |
| abstract_inverted_index.physician's | 259 |
| abstract_inverted_index.prediction. | 89 |
| abstract_inverted_index.demonstrated | 264 |
| abstract_inverted_index.information, | 52 |
| abstract_inverted_index.performance. | 116 |
| abstract_inverted_index.measurements, | 58 |
| abstract_inverted_index.co-morbidities, | 53 |
| abstract_inverted_index.cross-infection | 30 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile |