Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/diagnostics15162061
Background: Acute Kidney Injury (AKI) is a pivotal concern in neurocritical care, impacting patient survival and quality of life. This study harnesses machine learning (ML) techniques to predict the occurrence of AKI in patients receiving hyperosmolar therapy, aiming to optimize patient outcomes in neurocritical settings. Methods: We conducted a retrospective cohort study of 4886 patients who underwent hyperosmolar therapy in the neurosurgical intensive care unit (ICU). Comparative predictive analyses were carried out using advanced ML algorithms—eXtreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest (RF)—against standard multivariate logistic regression. Predictive performance was assessed using an 8:2 training-testing data split, with model fine-tuning through cross-validation. Results: The RF with KNN imputation showed slightly better performance than other approaches in predicting AKI. When applied to an independent test set, it achieved a sensitivity of 79% (95% CI: 70–87%) and specificity of 85% (95% CI: 82–88%), with an overall accuracy of 84% (95% CI: 81–87%) and AUROC of 0.86 (95% CI: 0.82–0.91). The multivariate logistic regression analysis, while informative, showed less predictive strength compared to the ML models. Delta chloride levels and serum osmolality proved to be the most influential predictors, with additional significant variables including pH, age, bicarbonate, and the osmolar gap. Conclusions: The prominence of delta chloride and serum osmolality among the predictive variables underscores its potential as a biomarker for AKI risk in this patient population.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/diagnostics15162061
- https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937
- OA Status
- gold
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413293177
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413293177Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/diagnostics15162061Digital Object Identifier
- Title
-
Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-17Full publication date if available
- Authors
-
Keun‐Soo Kim, Tae Jin Yoon, Joonghyun Ahn, Jeong-Am RyuList of authors in order
- Landing page
-
https://doi.org/10.3390/diagnostics15162061Publisher landing page
- PDF URL
-
https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937Direct OA link when available
- Concepts
-
Neurointensive care, Random forest, Acute kidney injury, Computer science, Algorithm, Machine learning, Artificial intelligence, Medicine, Intensive care medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413293177 |
|---|---|
| doi | https://doi.org/10.3390/diagnostics15162061 |
| ids.doi | https://doi.org/10.3390/diagnostics15162061 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40870913 |
| ids.openalex | https://openalex.org/W4413293177 |
| fwci | 0.0 |
| type | article |
| title | Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms |
| biblio.issue | 16 |
| biblio.volume | 15 |
| biblio.last_page | 2061 |
| biblio.first_page | 2061 |
| topics[0].id | https://openalex.org/T10684 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9846000075340271 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2727 |
| topics[0].subfield.display_name | Nephrology |
| topics[0].display_name | Acute Kidney Injury Research |
| topics[1].id | https://openalex.org/T11116 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9643999934196472 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2706 |
| topics[1].subfield.display_name | Critical Care and Intensive Care Medicine |
| topics[1].display_name | Trauma, Hemostasis, Coagulopathy, Resuscitation |
| topics[2].id | https://openalex.org/T10218 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9598000049591064 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Sepsis Diagnosis and Treatment |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C165455791 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9229451417922974 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7002299 |
| concepts[0].display_name | Neurointensive care |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7938425540924072 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C2780472472 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4690715968608856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q424337 |
| concepts[2].display_name | Acute kidney injury |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.40453317761421204 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36929863691329956 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3654785752296448 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3650120496749878 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3637552559375763 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C177713679 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3070531487464905 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[8].display_name | Intensive care medicine |
| concepts[9].id | https://openalex.org/C126322002 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12435883283615112 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[9].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/neurointensive-care |
| keywords[0].score | 0.9229451417922974 |
| keywords[0].display_name | Neurointensive care |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.7938425540924072 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/acute-kidney-injury |
| keywords[2].score | 0.4690715968608856 |
| keywords[2].display_name | Acute kidney injury |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.40453317761421204 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.36929863691329956 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.3654785752296448 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3650120496749878 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.3637552559375763 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[8].score | 0.3070531487464905 |
| keywords[8].display_name | Intensive care medicine |
| keywords[9].id | https://openalex.org/keywords/internal-medicine |
| keywords[9].score | 0.12435883283615112 |
| keywords[9].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.3390/diagnostics15162061 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172076 |
| locations[0].source.issn | 2075-4418 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2075-4418 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Diagnostics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Diagnostics |
| locations[0].landing_page_url | https://doi.org/10.3390/diagnostics15162061 |
| locations[1].id | pmid:40870913 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Diagnostics (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40870913 |
| locations[2].id | pmh:oai:doaj.org/article:62413375c160490387ba7e938a15de92 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Diagnostics, Vol 15, Iss 16, p 2061 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/62413375c160490387ba7e938a15de92 |
| locations[3].id | pmh:oai:europepmc.org:11193415 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12385729 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5080401771 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4901-6156 |
| authorships[0].author.display_name | Keun‐Soo Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21028721 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11749, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I21028721 |
| authorships[0].institutions[0].ror | https://ror.org/005bty106 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21028721 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Eulji University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keun Soo Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Emergency Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11749, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A5102110439 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-0922-4568 |
| authorships[1].author.display_name | Tae Jin Yoon |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210128866 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Bucheon Sejong Hospital, Bucheon 14754, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210128866 |
| authorships[1].institutions[0].ror | https://ror.org/02t3sfp68 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210128866 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Sejong General Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tae Jin Yoon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Emergency Medicine, Bucheon Sejong Hospital, Bucheon 14754, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A5008737228 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5768-5990 |
| authorships[2].author.display_name | Joonghyun Ahn |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802194831 |
| authorships[2].affiliations[0].raw_affiliation_string | Biomedical Statistics Center, Data Science Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[2].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Samsung Medical Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joonghyun Ahn |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Biomedical Statistics Center, Data Science Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5007449200 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1705-848X |
| authorships[3].author.display_name | Jeong-Am Ryu |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Critical Care Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Neurosurgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[3].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Samsung Medical Center |
| authorships[3].institutions[1].id | https://openalex.org/I848706 |
| authorships[3].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[3].institutions[1].country_code | KR |
| authorships[3].institutions[1].display_name | Sungkyunkwan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jeong-Am Ryu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Critical Care Medicine, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea, Department of Neurosurgery, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 06351, Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10684 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9846000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2727 |
| primary_topic.subfield.display_name | Nephrology |
| primary_topic.display_name | Acute Kidney Injury Research |
| related_works | https://openalex.org/W2313148748, https://openalex.org/W2029245355, https://openalex.org/W2519101761, https://openalex.org/W2794895112, https://openalex.org/W2041397914, https://openalex.org/W4394984040, https://openalex.org/W2120838027, https://openalex.org/W2413810557, https://openalex.org/W2048823735, https://openalex.org/W2970818327 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/diagnostics15162061 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172076 |
| best_oa_location.source.issn | 2075-4418 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2075-4418 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Diagnostics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Diagnostics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/diagnostics15162061 |
| primary_location.id | doi:10.3390/diagnostics15162061 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172076 |
| primary_location.source.issn | 2075-4418 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2075-4418 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Diagnostics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2075-4418/15/16/2061/pdf?version=1755489937 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Diagnostics |
| primary_location.landing_page_url | https://doi.org/10.3390/diagnostics15162061 |
| publication_date | 2025-08-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2131419242, https://openalex.org/W2149687213, https://openalex.org/W2056699935, https://openalex.org/W2141559993, https://openalex.org/W2136709241, https://openalex.org/W2139937737, https://openalex.org/W2794326569, https://openalex.org/W4386401961, https://openalex.org/W2148152947, https://openalex.org/W3200417946, https://openalex.org/W2905881221, https://openalex.org/W2580745727, https://openalex.org/W2964696298, https://openalex.org/W2612701595, https://openalex.org/W2142057837, https://openalex.org/W4301185431, https://openalex.org/W2984256275, https://openalex.org/W3000470572, https://openalex.org/W2789894922, https://openalex.org/W2967844572, https://openalex.org/W2542719835, https://openalex.org/W3135083987, https://openalex.org/W2886283492, https://openalex.org/W6723835939, https://openalex.org/W2794885170, https://openalex.org/W2319550379, https://openalex.org/W2996261172, https://openalex.org/W2934399013, https://openalex.org/W2012006249, https://openalex.org/W2620218941, https://openalex.org/W2917817764, https://openalex.org/W2994511115, https://openalex.org/W2073742622, https://openalex.org/W1967300023, https://openalex.org/W1994795952, https://openalex.org/W3040668991, https://openalex.org/W6631691190, https://openalex.org/W1493193319, https://openalex.org/W2166597282, https://openalex.org/W4311951868, https://openalex.org/W3014413945, https://openalex.org/W2120074411, https://openalex.org/W2581605534, https://openalex.org/W2613483874, https://openalex.org/W2496911238 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 6, 48, 130, 218 |
| abstract_inverted_index.ML | 74, 174 |
| abstract_inverted_index.RF | 107 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.an | 95, 124, 145 |
| abstract_inverted_index.as | 217 |
| abstract_inverted_index.be | 184 |
| abstract_inverted_index.in | 9, 32, 42, 59, 118, 223 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.it | 128 |
| abstract_inverted_index.of | 17, 30, 52, 132, 139, 148, 155, 204 |
| abstract_inverted_index.to | 26, 38, 123, 172, 183 |
| abstract_inverted_index.79% | 133 |
| abstract_inverted_index.84% | 149 |
| abstract_inverted_index.85% | 140 |
| abstract_inverted_index.8:2 | 96 |
| abstract_inverted_index.AKI | 31, 221 |
| abstract_inverted_index.CI: | 135, 142, 151, 158 |
| abstract_inverted_index.KNN | 109 |
| abstract_inverted_index.The | 106, 160, 202 |
| abstract_inverted_index.and | 15, 137, 153, 179, 197, 207 |
| abstract_inverted_index.for | 220 |
| abstract_inverted_index.its | 215 |
| abstract_inverted_index.out | 71 |
| abstract_inverted_index.pH, | 194 |
| abstract_inverted_index.the | 28, 60, 173, 185, 198, 211 |
| abstract_inverted_index.was | 92 |
| abstract_inverted_index.who | 55 |
| abstract_inverted_index.(95% | 134, 141, 150, 157 |
| abstract_inverted_index.(ML) | 24 |
| abstract_inverted_index.0.86 | 156 |
| abstract_inverted_index.4886 | 53 |
| abstract_inverted_index.AKI. | 120 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.When | 121 |
| abstract_inverted_index.age, | 195 |
| abstract_inverted_index.care | 63 |
| abstract_inverted_index.data | 98 |
| abstract_inverted_index.gap. | 200 |
| abstract_inverted_index.less | 168 |
| abstract_inverted_index.most | 186 |
| abstract_inverted_index.risk | 222 |
| abstract_inverted_index.set, | 127 |
| abstract_inverted_index.test | 126 |
| abstract_inverted_index.than | 115 |
| abstract_inverted_index.this | 224 |
| abstract_inverted_index.unit | 64 |
| abstract_inverted_index.were | 69 |
| abstract_inverted_index.with | 100, 108, 144, 189 |
| abstract_inverted_index.(AKI) | 4 |
| abstract_inverted_index.AUROC | 154 |
| abstract_inverted_index.Acute | 1 |
| abstract_inverted_index.Delta | 176 |
| abstract_inverted_index.among | 210 |
| abstract_inverted_index.care, | 11 |
| abstract_inverted_index.delta | 205 |
| abstract_inverted_index.life. | 18 |
| abstract_inverted_index.model | 101 |
| abstract_inverted_index.other | 116 |
| abstract_inverted_index.serum | 180, 208 |
| abstract_inverted_index.study | 20, 51 |
| abstract_inverted_index.using | 72, 94 |
| abstract_inverted_index.while | 165 |
| abstract_inverted_index.(GBM), | 82 |
| abstract_inverted_index.(ICU). | 65 |
| abstract_inverted_index.Forest | 84 |
| abstract_inverted_index.Injury | 3 |
| abstract_inverted_index.Kidney | 2 |
| abstract_inverted_index.Random | 83 |
| abstract_inverted_index.aiming | 37 |
| abstract_inverted_index.better | 113 |
| abstract_inverted_index.cohort | 50 |
| abstract_inverted_index.levels | 178 |
| abstract_inverted_index.proved | 182 |
| abstract_inverted_index.showed | 111, 167 |
| abstract_inverted_index.split, | 99 |
| abstract_inverted_index.Machine | 81 |
| abstract_inverted_index.applied | 122 |
| abstract_inverted_index.carried | 70 |
| abstract_inverted_index.concern | 8 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.models. | 175 |
| abstract_inverted_index.osmolar | 199 |
| abstract_inverted_index.overall | 146 |
| abstract_inverted_index.patient | 13, 40, 225 |
| abstract_inverted_index.pivotal | 7 |
| abstract_inverted_index.predict | 27 |
| abstract_inverted_index.quality | 16 |
| abstract_inverted_index.therapy | 58 |
| abstract_inverted_index.through | 103 |
| abstract_inverted_index.Boosting | 77, 80 |
| abstract_inverted_index.Gradient | 76, 79 |
| abstract_inverted_index.Methods: | 45 |
| abstract_inverted_index.Results: | 105 |
| abstract_inverted_index.accuracy | 147 |
| abstract_inverted_index.achieved | 129 |
| abstract_inverted_index.advanced | 73 |
| abstract_inverted_index.analyses | 68 |
| abstract_inverted_index.assessed | 93 |
| abstract_inverted_index.chloride | 177, 206 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.logistic | 88, 162 |
| abstract_inverted_index.optimize | 39 |
| abstract_inverted_index.outcomes | 41 |
| abstract_inverted_index.patients | 33, 54 |
| abstract_inverted_index.slightly | 112 |
| abstract_inverted_index.standard | 86 |
| abstract_inverted_index.strength | 170 |
| abstract_inverted_index.survival | 14 |
| abstract_inverted_index.therapy, | 36 |
| abstract_inverted_index.70–87%) | 136 |
| abstract_inverted_index.81–87%) | 152 |
| abstract_inverted_index.analysis, | 164 |
| abstract_inverted_index.biomarker | 219 |
| abstract_inverted_index.conducted | 47 |
| abstract_inverted_index.harnesses | 21 |
| abstract_inverted_index.impacting | 12 |
| abstract_inverted_index.including | 193 |
| abstract_inverted_index.intensive | 62 |
| abstract_inverted_index.potential | 216 |
| abstract_inverted_index.receiving | 34 |
| abstract_inverted_index.settings. | 44 |
| abstract_inverted_index.underwent | 56 |
| abstract_inverted_index.variables | 192, 213 |
| abstract_inverted_index.(XGBoost), | 78 |
| abstract_inverted_index.82–88%), | 143 |
| abstract_inverted_index.Predictive | 90 |
| abstract_inverted_index.additional | 190 |
| abstract_inverted_index.approaches | 117 |
| abstract_inverted_index.imputation | 110 |
| abstract_inverted_index.occurrence | 29 |
| abstract_inverted_index.osmolality | 181, 209 |
| abstract_inverted_index.predicting | 119 |
| abstract_inverted_index.predictive | 67, 169, 212 |
| abstract_inverted_index.prominence | 203 |
| abstract_inverted_index.regression | 163 |
| abstract_inverted_index.techniques | 25 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Comparative | 66 |
| abstract_inverted_index.fine-tuning | 102 |
| abstract_inverted_index.independent | 125 |
| abstract_inverted_index.influential | 187 |
| abstract_inverted_index.performance | 91, 114 |
| abstract_inverted_index.population. | 226 |
| abstract_inverted_index.predictors, | 188 |
| abstract_inverted_index.regression. | 89 |
| abstract_inverted_index.sensitivity | 131 |
| abstract_inverted_index.significant | 191 |
| abstract_inverted_index.specificity | 138 |
| abstract_inverted_index.underscores | 214 |
| abstract_inverted_index.Conclusions: | 201 |
| abstract_inverted_index.bicarbonate, | 196 |
| abstract_inverted_index.hyperosmolar | 35, 57 |
| abstract_inverted_index.informative, | 166 |
| abstract_inverted_index.multivariate | 87, 161 |
| abstract_inverted_index.0.82–0.91). | 159 |
| abstract_inverted_index.neurocritical | 10, 43 |
| abstract_inverted_index.neurosurgical | 61 |
| abstract_inverted_index.retrospective | 49 |
| abstract_inverted_index.(RF)—against | 85 |
| abstract_inverted_index.training-testing | 97 |
| abstract_inverted_index.cross-validation. | 104 |
| abstract_inverted_index.algorithms—eXtreme | 75 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5007449200 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| citation_normalized_percentile.value | 0.40245999 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |