Development, Calibration and Validation of Time Series Analysis and Artificial Neural Network Joint Model for Urban Noise Prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/app14167395
Noise in large urban areas, which is mainly generated by road traffic and by the human activities carried out nearby and inside the area under study, is a relevant problem. The continuous exposure to high noise levels, in fact, can lead to several problems, largely documented in the scientific literature. The analysis and forecasting of the noise level in a given area are, then, fundamental for control and prevention, especially when field measurements present peculiar trends and slopes, which can be modeled with a Time Series Analysis approach. In this paper, a hybrid model is presented for the analysis and the forecasting of noise time series in urban areas: this technique is based on the application of a deterministic decomposition model followed in cascade by a predictor of the forecasting errors based on an artificial neural network. Two variants of the hybrid model have been implemented and presented. The time series used to calibrate and validate the model is composed of sound pressure level measurements detected on a busy road near the commercial port of an Italian city. The proposed hybrid model has been calibrated on a part of the entire time series and validated on the remaining part. Residuals and error analysis, together with a detailed statistical description of the simulated noise levels and error metrics describe in detail the method’s performances and its limitations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app14167395
- OA Status
- gold
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401895238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401895238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app14167395Digital Object Identifier
- Title
-
Development, Calibration and Validation of Time Series Analysis and Artificial Neural Network Joint Model for Urban Noise PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-21Full publication date if available
- Authors
-
Domenico Rossi, Daljeet Singh, Cláudio GuarnacciaList of authors in order
- Landing page
-
https://doi.org/10.3390/app14167395Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app14167395Direct OA link when available
- Concepts
-
Artificial neural network, Calibration, Computer science, Series (stratigraphy), Noise (video), Artificial intelligence, Statistics, Mathematics, Geology, Image (mathematics), PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401895238 |
|---|---|
| doi | https://doi.org/10.3390/app14167395 |
| ids.doi | https://doi.org/10.3390/app14167395 |
| ids.openalex | https://openalex.org/W4401895238 |
| fwci | 0.0 |
| type | article |
| title | Development, Calibration and Validation of Time Series Analysis and Artificial Neural Network Joint Model for Urban Noise Prediction |
| biblio.issue | 16 |
| biblio.volume | 14 |
| biblio.last_page | 7395 |
| biblio.first_page | 7395 |
| topics[0].id | https://openalex.org/T11692 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3616 |
| topics[0].subfield.display_name | Speech and Hearing |
| topics[0].display_name | Noise Effects and Management |
| topics[1].id | https://openalex.org/T12759 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9731000065803528 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Vehicle Noise and Vibration Control |
| topics[2].id | https://openalex.org/T10822 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9555000066757202 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Acoustic Wave Phenomena Research |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6026347279548645 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C165838908 |
| concepts[1].level | 2 |
| concepts[1].score | 0.517150342464447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q736777 |
| concepts[1].display_name | Calibration |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5051572918891907 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C143724316 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4685089886188507 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[3].display_name | Series (stratigraphy) |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.41951465606689453 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3052317798137665 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1589122712612152 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.14997994899749756 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07970526814460754 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.6026347279548645 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/calibration |
| keywords[1].score | 0.517150342464447 |
| keywords[1].display_name | Calibration |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5051572918891907 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/series |
| keywords[3].score | 0.4685089886188507 |
| keywords[3].display_name | Series (stratigraphy) |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.41951465606689453 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3052317798137665 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.1589122712612152 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.14997994899749756 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.07970526814460754 |
| keywords[8].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/app14167395 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app14167395 |
| locations[1].id | pmh:oai:doaj.org/article:9021f5c0373441a6a604a6da3106ec9f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 14, Iss 16, p 7395 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/9021f5c0373441a6a604a6da3106ec9f |
| locations[2].id | pmh:oai:mdpi.com:/2076-3417/14/16/7395/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Applied Sciences |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/app14167395 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072951301 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2554-5088 |
| authorships[0].author.display_name | Domenico Rossi |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I131729948 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I131729948 |
| authorships[0].institutions[0].ror | https://ror.org/0192m2k53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I131729948 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Salerno |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Domenico Rossi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy |
| authorships[1].author.id | https://openalex.org/A5017728649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0587-1476 |
| authorships[1].author.display_name | Daljeet Singh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162030827 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Thapar Institute of Engineering & Technology, Bhadson Road, Patiala 147004, Punjab, India |
| authorships[1].institutions[0].id | https://openalex.org/I162030827 |
| authorships[1].institutions[0].ror | https://ror.org/00wdq3744 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162030827 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Thapar Institute of Engineering & Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daljeet Singh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical Engineering, Thapar Institute of Engineering & Technology, Bhadson Road, Patiala 147004, Punjab, India |
| authorships[2].author.id | https://openalex.org/A5008122101 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4014-0679 |
| authorships[2].author.display_name | Cláudio Guarnaccia |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I131729948 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I131729948 |
| authorships[2].institutions[0].ror | https://ror.org/0192m2k53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I131729948 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Salerno |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Claudio Guarnaccia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app14167395 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development, Calibration and Validation of Time Series Analysis and Artificial Neural Network Joint Model for Urban Noise Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11692 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3616 |
| primary_topic.subfield.display_name | Speech and Hearing |
| primary_topic.display_name | Noise Effects and Management |
| related_works | https://openalex.org/W1919101720, https://openalex.org/W4390822878, https://openalex.org/W96888382, https://openalex.org/W2041308758, https://openalex.org/W4386126592, https://openalex.org/W4392529072, https://openalex.org/W4394131749, https://openalex.org/W4394084199, https://openalex.org/W1976730198, https://openalex.org/W2787593906 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/app14167395 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app14167395 |
| primary_location.id | doi:10.3390/app14167395 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app14167395 |
| publication_date | 2024-08-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2126133621, https://openalex.org/W2023974434, https://openalex.org/W3159707902, https://openalex.org/W4304759566, https://openalex.org/W3174063281, https://openalex.org/W1989465643, https://openalex.org/W3138210346, https://openalex.org/W4308971182, https://openalex.org/W6641460397, https://openalex.org/W4391077313, https://openalex.org/W2075913921, https://openalex.org/W2810513114, https://openalex.org/W6729730203, https://openalex.org/W2963123137, https://openalex.org/W3194233311, https://openalex.org/W2233072565, https://openalex.org/W4377107242, https://openalex.org/W4388526436, https://openalex.org/W4393866665, https://openalex.org/W4393194699, https://openalex.org/W2093230975, https://openalex.org/W2146904825, https://openalex.org/W2131070882, https://openalex.org/W2117922789, https://openalex.org/W2097580026, https://openalex.org/W4396716231, https://openalex.org/W3126950048, https://openalex.org/W2486690843, https://openalex.org/W1964647117, https://openalex.org/W2553795214 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 27, 59, 83, 91, 117, 125, 167, 186, 205 |
| abstract_inverted_index.In | 88 |
| abstract_inverted_index.an | 133, 175 |
| abstract_inverted_index.be | 80 |
| abstract_inverted_index.by | 9, 13, 124 |
| abstract_inverted_index.in | 1, 37, 46, 58, 106, 122, 218 |
| abstract_inverted_index.is | 6, 26, 94, 111, 158 |
| abstract_inverted_index.of | 54, 102, 116, 127, 139, 160, 174, 188, 209 |
| abstract_inverted_index.on | 113, 132, 166, 185, 195 |
| abstract_inverted_index.to | 33, 41, 152 |
| abstract_inverted_index.The | 30, 50, 148, 178 |
| abstract_inverted_index.Two | 137 |
| abstract_inverted_index.and | 12, 20, 52, 67, 76, 99, 146, 154, 193, 200, 214, 223 |
| abstract_inverted_index.can | 39, 79 |
| abstract_inverted_index.for | 65, 96 |
| abstract_inverted_index.has | 182 |
| abstract_inverted_index.its | 224 |
| abstract_inverted_index.out | 18 |
| abstract_inverted_index.the | 14, 22, 47, 55, 97, 100, 114, 128, 140, 156, 171, 189, 196, 210, 220 |
| abstract_inverted_index.Time | 84 |
| abstract_inverted_index.are, | 62 |
| abstract_inverted_index.area | 23, 61 |
| abstract_inverted_index.been | 144, 183 |
| abstract_inverted_index.busy | 168 |
| abstract_inverted_index.have | 143 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.lead | 40 |
| abstract_inverted_index.near | 170 |
| abstract_inverted_index.part | 187 |
| abstract_inverted_index.port | 173 |
| abstract_inverted_index.road | 10, 169 |
| abstract_inverted_index.this | 89, 109 |
| abstract_inverted_index.time | 104, 149, 191 |
| abstract_inverted_index.used | 151 |
| abstract_inverted_index.when | 70 |
| abstract_inverted_index.with | 82, 204 |
| abstract_inverted_index.Noise | 0 |
| abstract_inverted_index.based | 112, 131 |
| abstract_inverted_index.city. | 177 |
| abstract_inverted_index.error | 201, 215 |
| abstract_inverted_index.fact, | 38 |
| abstract_inverted_index.field | 71 |
| abstract_inverted_index.given | 60 |
| abstract_inverted_index.human | 15 |
| abstract_inverted_index.large | 2 |
| abstract_inverted_index.level | 57, 163 |
| abstract_inverted_index.model | 93, 120, 142, 157, 181 |
| abstract_inverted_index.noise | 35, 56, 103, 212 |
| abstract_inverted_index.part. | 198 |
| abstract_inverted_index.sound | 161 |
| abstract_inverted_index.then, | 63 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.urban | 3, 107 |
| abstract_inverted_index.which | 5, 78 |
| abstract_inverted_index.Series | 85 |
| abstract_inverted_index.areas, | 4 |
| abstract_inverted_index.areas: | 108 |
| abstract_inverted_index.detail | 219 |
| abstract_inverted_index.entire | 190 |
| abstract_inverted_index.errors | 130 |
| abstract_inverted_index.hybrid | 92, 141, 180 |
| abstract_inverted_index.inside | 21 |
| abstract_inverted_index.levels | 213 |
| abstract_inverted_index.mainly | 7 |
| abstract_inverted_index.nearby | 19 |
| abstract_inverted_index.neural | 135 |
| abstract_inverted_index.paper, | 90 |
| abstract_inverted_index.series | 105, 150, 192 |
| abstract_inverted_index.study, | 25 |
| abstract_inverted_index.trends | 75 |
| abstract_inverted_index.Italian | 176 |
| abstract_inverted_index.carried | 17 |
| abstract_inverted_index.cascade | 123 |
| abstract_inverted_index.control | 66 |
| abstract_inverted_index.largely | 44 |
| abstract_inverted_index.levels, | 36 |
| abstract_inverted_index.metrics | 216 |
| abstract_inverted_index.modeled | 81 |
| abstract_inverted_index.present | 73 |
| abstract_inverted_index.several | 42 |
| abstract_inverted_index.slopes, | 77 |
| abstract_inverted_index.traffic | 11 |
| abstract_inverted_index.Analysis | 86 |
| abstract_inverted_index.analysis | 51, 98 |
| abstract_inverted_index.composed | 159 |
| abstract_inverted_index.describe | 217 |
| abstract_inverted_index.detailed | 206 |
| abstract_inverted_index.detected | 165 |
| abstract_inverted_index.exposure | 32 |
| abstract_inverted_index.followed | 121 |
| abstract_inverted_index.network. | 136 |
| abstract_inverted_index.peculiar | 74 |
| abstract_inverted_index.pressure | 162 |
| abstract_inverted_index.problem. | 29 |
| abstract_inverted_index.proposed | 179 |
| abstract_inverted_index.relevant | 28 |
| abstract_inverted_index.together | 203 |
| abstract_inverted_index.validate | 155 |
| abstract_inverted_index.variants | 138 |
| abstract_inverted_index.Residuals | 199 |
| abstract_inverted_index.analysis, | 202 |
| abstract_inverted_index.approach. | 87 |
| abstract_inverted_index.calibrate | 153 |
| abstract_inverted_index.generated | 8 |
| abstract_inverted_index.predictor | 126 |
| abstract_inverted_index.presented | 95 |
| abstract_inverted_index.problems, | 43 |
| abstract_inverted_index.remaining | 197 |
| abstract_inverted_index.simulated | 211 |
| abstract_inverted_index.technique | 110 |
| abstract_inverted_index.validated | 194 |
| abstract_inverted_index.activities | 16 |
| abstract_inverted_index.artificial | 134 |
| abstract_inverted_index.calibrated | 184 |
| abstract_inverted_index.commercial | 172 |
| abstract_inverted_index.continuous | 31 |
| abstract_inverted_index.documented | 45 |
| abstract_inverted_index.especially | 69 |
| abstract_inverted_index.method’s | 221 |
| abstract_inverted_index.presented. | 147 |
| abstract_inverted_index.scientific | 48 |
| abstract_inverted_index.application | 115 |
| abstract_inverted_index.description | 208 |
| abstract_inverted_index.forecasting | 53, 101, 129 |
| abstract_inverted_index.fundamental | 64 |
| abstract_inverted_index.implemented | 145 |
| abstract_inverted_index.literature. | 49 |
| abstract_inverted_index.prevention, | 68 |
| abstract_inverted_index.statistical | 207 |
| abstract_inverted_index.limitations. | 225 |
| abstract_inverted_index.measurements | 72, 164 |
| abstract_inverted_index.performances | 222 |
| abstract_inverted_index.decomposition | 119 |
| abstract_inverted_index.deterministic | 118 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5072951301 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I131729948 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.24116923 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |