Development of a miRNA-based deep learning model for autism spectrum disorder diagnosis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4103/atn.atn-d-24-00033
JOURNAL/atin/04.03/02274269-202506000-00002/figure1/v/2025-09-16T151948Z/r/image-tiff Autism spectrum disorder is a neurodevelopmental disorder characterized by differences in social behaviors, intellectual disabilities, and various mental health conditions. It is often undiagnosed due to overlapping symptoms with other disorders and the challenging, subjective nature of behavioral analysis. However, recent studies have identified dysregulated microRNAs as potential biomarkers for autism spectrum disorder, which could enable more accurate quantitative diagnoses. This study aimed to develop a machine learning model to predict whether dysregulation of a specific miRNA is associated with autism spectrum disorder. We selected an even number of autism spectrum disorder-associated miRNAs and randomly chosen miRNAs for analysis. Data was collected on amino acid sequences, gene targets, and predicted pathway attributes to classify each microRNA. Feature selection was then performed to identify the optimal number of features for achieving the highest accuracy. Only statistically significant predictions ( P < 0.05) were included in the training dataset. The sequential model with two hidden layers emerged as the best classifier, achieving an accuracy of 95.24% for microRNA biomarkers. This model was further validated with an independent, unseen dataset, which achieved 81.67% accuracy. The study also explored the genes and pathways of significance to understand better potential causes of autism spectrum disorder, particularly those involved in regulating the pluripotency of stem cells. This study presents a rapid and efficient method for classifying microRNAs as potential biomarkers for autism spectrum disorder based on their biological characteristics. By screening for dysregulated microRNAs in patients’ blood or serum samples, this approach can enhance early diagnosis and timely intervention.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4103/atn.atn-d-24-00033
- OA Status
- hybrid
- Cited By
- 4
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409275233
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409275233Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4103/atn.atn-d-24-00033Digital Object Identifier
- Title
-
Development of a miRNA-based deep learning model for autism spectrum disorder diagnosisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-08Full publication date if available
- Authors
-
S. Dogra, Valentina L. Kouznetsova, Santosh Kesari, Igor F. TsigelnyList of authors in order
- Landing page
-
https://doi.org/10.4103/atn.atn-d-24-00033Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.4103/atn.atn-d-24-00033Direct OA link when available
- Concepts
-
Autism spectrum disorder, microRNA, Deep learning, Autism, Spectrum (functional analysis), Psychology, Artificial intelligence, Computer science, Cognitive psychology, Developmental psychology, Biology, Genetics, Physics, Gene, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409275233 |
|---|---|
| doi | https://doi.org/10.4103/atn.atn-d-24-00033 |
| ids.doi | https://doi.org/10.4103/atn.atn-d-24-00033 |
| ids.openalex | https://openalex.org/W4409275233 |
| fwci | 16.33521962 |
| type | article |
| title | Development of a miRNA-based deep learning model for autism spectrum disorder diagnosis |
| biblio.issue | 2 |
| biblio.volume | 2 |
| biblio.last_page | 76 |
| biblio.first_page | 72 |
| topics[0].id | https://openalex.org/T10106 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Autism Spectrum Disorder Research |
| topics[1].id | https://openalex.org/T11772 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.95169997215271 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Genetics and Neurodevelopmental Disorders |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778538070 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7328413128852844 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1436063 |
| concepts[0].display_name | Autism spectrum disorder |
| concepts[1].id | https://openalex.org/C145059251 |
| concepts[1].level | 3 |
| concepts[1].score | 0.637248158454895 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q310899 |
| concepts[1].display_name | microRNA |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5908133387565613 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C205778803 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4531862139701843 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q38404 |
| concepts[3].display_name | Autism |
| concepts[4].id | https://openalex.org/C156778621 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4296630620956421 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1365748 |
| concepts[4].display_name | Spectrum (functional analysis) |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4160059094429016 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4116988182067871 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3575975298881531 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C180747234 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3208439350128174 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[8].display_name | Cognitive psychology |
| concepts[9].id | https://openalex.org/C138496976 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23475134372711182 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q175002 |
| concepts[9].display_name | Developmental psychology |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1900174617767334 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C54355233 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12399837374687195 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[11].display_name | Genetics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1054239571094513 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.06566283106803894 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/autism-spectrum-disorder |
| keywords[0].score | 0.7328413128852844 |
| keywords[0].display_name | Autism spectrum disorder |
| keywords[1].id | https://openalex.org/keywords/microrna |
| keywords[1].score | 0.637248158454895 |
| keywords[1].display_name | microRNA |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5908133387565613 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/autism |
| keywords[3].score | 0.4531862139701843 |
| keywords[3].display_name | Autism |
| keywords[4].id | https://openalex.org/keywords/spectrum |
| keywords[4].score | 0.4296630620956421 |
| keywords[4].display_name | Spectrum (functional analysis) |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.4160059094429016 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4116988182067871 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3575975298881531 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[8].score | 0.3208439350128174 |
| keywords[8].display_name | Cognitive psychology |
| keywords[9].id | https://openalex.org/keywords/developmental-psychology |
| keywords[9].score | 0.23475134372711182 |
| keywords[9].display_name | Developmental psychology |
| keywords[10].id | https://openalex.org/keywords/biology |
| keywords[10].score | 0.1900174617767334 |
| keywords[10].display_name | Biology |
| keywords[11].id | https://openalex.org/keywords/genetics |
| keywords[11].score | 0.12399837374687195 |
| keywords[11].display_name | Genetics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.1054239571094513 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/gene |
| keywords[13].score | 0.06566283106803894 |
| keywords[13].display_name | Gene |
| language | en |
| locations[0].id | doi:10.4103/atn.atn-d-24-00033 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404669085 |
| locations[0].source.issn | 3050-6816, 3050-6824 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3050-6816 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Advanced technology in neuroscience . |
| locations[0].source.host_organization | https://openalex.org/P4310320448 |
| locations[0].source.host_organization_name | Medknow |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| locations[0].source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advanced Technology in Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.4103/atn.atn-d-24-00033 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5076429146 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-2669-1747 |
| authorships[0].author.display_name | S. Dogra |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | REHS Program, San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I181653535 |
| authorships[0].institutions[0].ror | https://ror.org/04mg3nk07 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | San Diego Supercomputer Center |
| authorships[0].institutions[1].id | https://openalex.org/I36258959 |
| authorships[0].institutions[1].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saanvi Dogra |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | REHS Program, San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| authorships[1].author.id | https://openalex.org/A5050071283 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9457-7027 |
| authorships[1].author.display_name | Valentina L. Kouznetsova |
| authorships[1].countries | US |
| authorships[1].affiliations[0].raw_affiliation_string | BiAna Institute, San Diego, CA, USA |
| authorships[1].affiliations[1].raw_affiliation_string | CureScience Institute, San Diego, CA, USA |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[1].affiliations[2].raw_affiliation_string | San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I181653535 |
| authorships[1].institutions[0].ror | https://ror.org/04mg3nk07 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | San Diego Supercomputer Center |
| authorships[1].institutions[1].id | https://openalex.org/I36258959 |
| authorships[1].institutions[1].ror | https://ror.org/0168r3w48 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I36258959 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of California, San Diego |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Valentina L. Kouznetsova |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | BiAna Institute, San Diego, CA, USA, CureScience Institute, San Diego, CA, USA, San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| authorships[2].author.id | https://openalex.org/A5063863193 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3772-6000 |
| authorships[2].author.display_name | Santosh Kesari |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134119 |
| authorships[2].affiliations[0].raw_affiliation_string | Pacific Neuroscience Institute, Santa Monica, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210134119 |
| authorships[2].institutions[0].ror | https://ror.org/03n07ce29 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134119 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Pacific Heart Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Santosh Kesari |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Pacific Neuroscience Institute, Santa Monica, CA, USA |
| authorships[3].author.id | https://openalex.org/A5047059421 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7155-8947 |
| authorships[3].author.display_name | Igor F. Tsigelny |
| authorships[3].countries | US |
| authorships[3].affiliations[0].raw_affiliation_string | BiAna Institute, San Diego, CA, USA |
| authorships[3].affiliations[1].raw_affiliation_string | CureScience Institute, San Diego, CA, USA |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[3].affiliations[2].raw_affiliation_string | San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| authorships[3].affiliations[3].institution_ids | https://openalex.org/I36258959 |
| authorships[3].affiliations[3].raw_affiliation_string | Department of Neurosciences, UC San Diego, La Jolla, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I181653535 |
| authorships[3].institutions[0].ror | https://ror.org/04mg3nk07 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I181653535, https://openalex.org/I36258959 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | San Diego Supercomputer Center |
| authorships[3].institutions[1].id | https://openalex.org/I36258959 |
| authorships[3].institutions[1].ror | https://ror.org/0168r3w48 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I36258959 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of California, San Diego |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Igor F. Tsigelny |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | BiAna Institute, San Diego, CA, USA, CureScience Institute, San Diego, CA, USA, Department of Neurosciences, UC San Diego, La Jolla, CA, USA, San Diego Supercomputer Center, UC San Diego, La Jolla, CA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.4103/atn.atn-d-24-00033 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of a miRNA-based deep learning model for autism spectrum disorder diagnosis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10106 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Autism Spectrum Disorder Research |
| related_works | https://openalex.org/W4280602684, https://openalex.org/W4310092953, https://openalex.org/W2227393071, https://openalex.org/W4402326599, https://openalex.org/W1995350144, https://openalex.org/W2082102603, https://openalex.org/W2166141227, https://openalex.org/W3133980636, https://openalex.org/W4378085486, https://openalex.org/W4366602711 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4103/atn.atn-d-24-00033 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404669085 |
| best_oa_location.source.issn | 3050-6816, 3050-6824 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3050-6816 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Advanced technology in neuroscience . |
| best_oa_location.source.host_organization | https://openalex.org/P4310320448 |
| best_oa_location.source.host_organization_name | Medknow |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| best_oa_location.source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advanced Technology in Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.4103/atn.atn-d-24-00033 |
| primary_location.id | doi:10.4103/atn.atn-d-24-00033 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404669085 |
| primary_location.source.issn | 3050-6816, 3050-6824 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3050-6816 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Advanced technology in neuroscience . |
| primary_location.source.host_organization | https://openalex.org/P4310320448 |
| primary_location.source.host_organization_name | Medknow |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320448, https://openalex.org/P4310318547 |
| primary_location.source.host_organization_lineage_names | Medknow, Wolters Kluwer |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advanced Technology in Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.4103/atn.atn-d-24-00033 |
| publication_date | 2025-04-08 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4360600181, https://openalex.org/W4212832824, https://openalex.org/W2769544142, https://openalex.org/W4391225641, https://openalex.org/W2988639281, https://openalex.org/W2811212358, https://openalex.org/W3001041847, https://openalex.org/W2025449301, https://openalex.org/W4220677954, https://openalex.org/W4308458520, https://openalex.org/W4319059271, https://openalex.org/W4380479961, https://openalex.org/W4317811051, https://openalex.org/W4389793742, https://openalex.org/W4306842247, https://openalex.org/W4391264810, https://openalex.org/W2069696742, https://openalex.org/W3199180861, https://openalex.org/W1484555099, https://openalex.org/W2164736442, https://openalex.org/W2769819804, https://openalex.org/W3080412378, https://openalex.org/W2112192177, https://openalex.org/W4212814090, https://openalex.org/W4220831425, https://openalex.org/W3049597017, https://openalex.org/W4381849785, https://openalex.org/W4223465279, https://openalex.org/W2922677748 |
| referenced_works_count | 29 |
| abstract_inverted_index.( | 138 |
| abstract_inverted_index.P | 139 |
| abstract_inverted_index.a | 5, 66, 75, 214 |
| abstract_inverted_index.By | 234 |
| abstract_inverted_index.It | 21 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 86, 161, 174 |
| abstract_inverted_index.as | 47, 156, 222 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 11, 144, 204, 239 |
| abstract_inverted_index.is | 4, 22, 78 |
| abstract_inverted_index.of | 37, 74, 89, 127, 163, 190, 197, 208 |
| abstract_inverted_index.on | 103, 230 |
| abstract_inverted_index.or | 242 |
| abstract_inverted_index.to | 26, 64, 70, 113, 122, 192 |
| abstract_inverted_index.The | 148, 182 |
| abstract_inverted_index.and | 16, 32, 94, 109, 188, 216, 251 |
| abstract_inverted_index.can | 247 |
| abstract_inverted_index.due | 25 |
| abstract_inverted_index.for | 50, 98, 129, 165, 219, 225, 236 |
| abstract_inverted_index.the | 33, 124, 131, 145, 157, 186, 206 |
| abstract_inverted_index.two | 152 |
| abstract_inverted_index.was | 101, 119, 170 |
| abstract_inverted_index.< | 140 |
| abstract_inverted_index.Data | 100 |
| abstract_inverted_index.Only | 134 |
| abstract_inverted_index.This | 61, 168, 211 |
| abstract_inverted_index.acid | 105 |
| abstract_inverted_index.also | 184 |
| abstract_inverted_index.best | 158 |
| abstract_inverted_index.each | 115 |
| abstract_inverted_index.even | 87 |
| abstract_inverted_index.gene | 107 |
| abstract_inverted_index.have | 43 |
| abstract_inverted_index.more | 57 |
| abstract_inverted_index.stem | 209 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.this | 245 |
| abstract_inverted_index.were | 142 |
| abstract_inverted_index.with | 29, 80, 151, 173 |
| abstract_inverted_index.0.05) | 141 |
| abstract_inverted_index.aimed | 63 |
| abstract_inverted_index.amino | 104 |
| abstract_inverted_index.based | 229 |
| abstract_inverted_index.blood | 241 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.early | 249 |
| abstract_inverted_index.genes | 187 |
| abstract_inverted_index.miRNA | 77 |
| abstract_inverted_index.model | 69, 150, 169 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.other | 30 |
| abstract_inverted_index.rapid | 215 |
| abstract_inverted_index.serum | 243 |
| abstract_inverted_index.study | 62, 183, 212 |
| abstract_inverted_index.their | 231 |
| abstract_inverted_index.those | 202 |
| abstract_inverted_index.which | 54, 178 |
| abstract_inverted_index.81.67% | 180 |
| abstract_inverted_index.95.24% | 164 |
| abstract_inverted_index.Autism | 1 |
| abstract_inverted_index.autism | 51, 81, 90, 198, 226 |
| abstract_inverted_index.better | 194 |
| abstract_inverted_index.causes | 196 |
| abstract_inverted_index.cells. | 210 |
| abstract_inverted_index.chosen | 96 |
| abstract_inverted_index.enable | 56 |
| abstract_inverted_index.health | 19 |
| abstract_inverted_index.hidden | 153 |
| abstract_inverted_index.layers | 154 |
| abstract_inverted_index.mental | 18 |
| abstract_inverted_index.method | 218 |
| abstract_inverted_index.miRNAs | 93, 97 |
| abstract_inverted_index.nature | 36 |
| abstract_inverted_index.number | 88, 126 |
| abstract_inverted_index.recent | 41 |
| abstract_inverted_index.social | 12 |
| abstract_inverted_index.timely | 252 |
| abstract_inverted_index.unseen | 176 |
| abstract_inverted_index.Feature | 117 |
| abstract_inverted_index.develop | 65 |
| abstract_inverted_index.emerged | 155 |
| abstract_inverted_index.enhance | 248 |
| abstract_inverted_index.further | 171 |
| abstract_inverted_index.highest | 132 |
| abstract_inverted_index.machine | 67 |
| abstract_inverted_index.optimal | 125 |
| abstract_inverted_index.pathway | 111 |
| abstract_inverted_index.predict | 71 |
| abstract_inverted_index.studies | 42 |
| abstract_inverted_index.various | 17 |
| abstract_inverted_index.whether | 72 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.accuracy | 162 |
| abstract_inverted_index.accurate | 58 |
| abstract_inverted_index.achieved | 179 |
| abstract_inverted_index.approach | 246 |
| abstract_inverted_index.classify | 114 |
| abstract_inverted_index.dataset, | 177 |
| abstract_inverted_index.dataset. | 147 |
| abstract_inverted_index.disorder | 3, 7, 228 |
| abstract_inverted_index.explored | 185 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.identify | 123 |
| abstract_inverted_index.included | 143 |
| abstract_inverted_index.involved | 203 |
| abstract_inverted_index.learning | 68 |
| abstract_inverted_index.microRNA | 166 |
| abstract_inverted_index.pathways | 189 |
| abstract_inverted_index.presents | 213 |
| abstract_inverted_index.randomly | 95 |
| abstract_inverted_index.samples, | 244 |
| abstract_inverted_index.selected | 85 |
| abstract_inverted_index.specific | 76 |
| abstract_inverted_index.spectrum | 2, 52, 82, 91, 199, 227 |
| abstract_inverted_index.symptoms | 28 |
| abstract_inverted_index.targets, | 108 |
| abstract_inverted_index.training | 146 |
| abstract_inverted_index.accuracy. | 133, 181 |
| abstract_inverted_index.achieving | 130, 160 |
| abstract_inverted_index.analysis. | 39, 99 |
| abstract_inverted_index.collected | 102 |
| abstract_inverted_index.diagnosis | 250 |
| abstract_inverted_index.disorder, | 53, 200 |
| abstract_inverted_index.disorder. | 83 |
| abstract_inverted_index.disorders | 31 |
| abstract_inverted_index.efficient | 217 |
| abstract_inverted_index.microRNA. | 116 |
| abstract_inverted_index.microRNAs | 46, 221, 238 |
| abstract_inverted_index.performed | 121 |
| abstract_inverted_index.potential | 48, 195, 223 |
| abstract_inverted_index.predicted | 110 |
| abstract_inverted_index.screening | 235 |
| abstract_inverted_index.selection | 118 |
| abstract_inverted_index.validated | 172 |
| abstract_inverted_index.associated | 79 |
| abstract_inverted_index.attributes | 112 |
| abstract_inverted_index.behavioral | 38 |
| abstract_inverted_index.behaviors, | 13 |
| abstract_inverted_index.biological | 232 |
| abstract_inverted_index.biomarkers | 49, 224 |
| abstract_inverted_index.diagnoses. | 60 |
| abstract_inverted_index.identified | 44 |
| abstract_inverted_index.regulating | 205 |
| abstract_inverted_index.sequences, | 106 |
| abstract_inverted_index.sequential | 149 |
| abstract_inverted_index.subjective | 35 |
| abstract_inverted_index.understand | 193 |
| abstract_inverted_index.biomarkers. | 167 |
| abstract_inverted_index.classifier, | 159 |
| abstract_inverted_index.classifying | 220 |
| abstract_inverted_index.conditions. | 20 |
| abstract_inverted_index.differences | 10 |
| abstract_inverted_index.overlapping | 27 |
| abstract_inverted_index.patients’ | 240 |
| abstract_inverted_index.predictions | 137 |
| abstract_inverted_index.significant | 136 |
| abstract_inverted_index.undiagnosed | 24 |
| abstract_inverted_index.challenging, | 34 |
| abstract_inverted_index.dysregulated | 45, 237 |
| abstract_inverted_index.independent, | 175 |
| abstract_inverted_index.intellectual | 14 |
| abstract_inverted_index.particularly | 201 |
| abstract_inverted_index.pluripotency | 207 |
| abstract_inverted_index.quantitative | 59 |
| abstract_inverted_index.significance | 191 |
| abstract_inverted_index.characterized | 8 |
| abstract_inverted_index.disabilities, | 15 |
| abstract_inverted_index.dysregulation | 73 |
| abstract_inverted_index.intervention. | 253 |
| abstract_inverted_index.statistically | 135 |
| abstract_inverted_index.characteristics. | 233 |
| abstract_inverted_index.neurodevelopmental | 6 |
| abstract_inverted_index.disorder-associated | 92 |
| abstract_inverted_index.JOURNAL/atin/04.03/02274269-202506000-00002/figure1/v/2025-09-16T151948Z/r/image-tiff | 0 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.97772862 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |