Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1001/jamanetworkopen.2024.24299
Importance Meticulous postoperative flap monitoring is essential for preventing flap failure and achieving optimal results in free flap operations, for which physical examination has remained the criterion standard. Despite the high reliability of physical examination, the requirement of excessive use of clinician time has been considered a main drawback. Objective To develop an automated free flap monitoring system using artificial intelligence (AI), minimizing human involvement while maintaining efficiency. Design, Setting, and Participants In this prognostic study, the designed system involves a smartphone camera installed in a location with optimal flap visibility to capture photographs at regular intervals. The automated program identifies the flap area, checks for notable abnormalities in its appearance, and notifies medical staff if abnormalities are detected. Implementation requires 2 AI-based models: a segmentation model for automatic flap recognition in photographs and a grading model for evaluating the perfusion status of the identified flap. To develop this system, flap photographs captured for monitoring were collected from patients who underwent free flap–based reconstruction from March 1, 2020, to August 31, 2023. After the 2 models were developed, they were integrated to construct the system, which was applied in a clinical setting in November 2023. Exposure Conducting the developed automated AI-based flap monitoring system. Main Outcomes and Measures Accuracy of the developed models and feasibility of clinical application of the system. Results Photographs were obtained from 305 patients (median age, 62 years [range, 8-86 years]; 178 [58.4%] were male). Based on 2068 photographs, the FS-net program (a customized model) was developed for flap segmentation, demonstrating a mean (SD) Dice similarity coefficient of 0.970 (0.001) with 5-fold cross-validation. For the flap grading system, 11 112 photographs from the 305 patients were used, encompassing 10 115 photographs with normal features and 997 with abnormal features. Tested on 5506 photographs, the DenseNet121 model demonstrated the highest performance with an area under the receiver operating characteristic curve of 0.960 (95% CI, 0.951-0.969). The sensitivity for detecting venous insufficiency was 97.5% and for arterial insufficiency was 92.8%. When applied to 10 patients, the system successfully conducted 143 automated monitoring sessions without significant issues. Conclusions and Relevance The findings of this study suggest that a novel automated system may enable efficient flap monitoring with minimal use of clinician time. It may be anticipated to serve as an effective surveillance tool for postoperative free flap monitoring. Further studies are required to verify its reliability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1001/jamanetworkopen.2024.24299
- OA Status
- gold
- Cited By
- 19
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401023083
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401023083Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1001/jamanetworkopen.2024.24299Digital Object Identifier
- Title
-
Development of an Automated Free Flap Monitoring System Based on Artificial IntelligenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-26Full publication date if available
- Authors
-
Ji Su Kim, Sang Mee Lee, Da Eun Kim, Sung-Jin Kim, Myung Jin Chung, Zero Kim, Tae Young Kim, Kyeong‐Tae LeeList of authors in order
- Landing page
-
https://doi.org/10.1001/jamanetworkopen.2024.24299Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1001/jamanetworkopen.2024.24299Direct OA link when available
- Concepts
-
Grading (engineering), Segmentation, Computer science, Continuous monitoring, Reliability (semiconductor), Artificial intelligence, Medicine, Operations management, Engineering, Quantum mechanics, Physics, Civil engineering, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401023083 |
|---|---|
| doi | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| ids.doi | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39058486 |
| ids.openalex | https://openalex.org/W4401023083 |
| fwci | 23.72406722 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D058752 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Free Tissue Flaps |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D008297 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Male |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001185 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Artificial Intelligence |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005260 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Female |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008875 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Middle Aged |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000368 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Aged |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000328 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Adult |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000369 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Aged, 80 and over |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D010781 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Photography |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D008991 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Monitoring, Physiologic |
| mesh[11].qualifier_ui | Q000295 |
| mesh[11].descriptor_ui | D008991 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | instrumentation |
| mesh[11].descriptor_name | Monitoring, Physiologic |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D055815 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Young Adult |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000293 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Adolescent |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D019651 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Plastic Surgery Procedures |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D015203 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Reproducibility of Results |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D058752 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Free Tissue Flaps |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008297 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Male |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D001185 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Artificial Intelligence |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D008875 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Middle Aged |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000368 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Aged |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000328 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Adult |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000369 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Aged, 80 and over |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D010781 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Photography |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D008991 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Monitoring, Physiologic |
| mesh[27].qualifier_ui | Q000295 |
| mesh[27].descriptor_ui | D008991 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | instrumentation |
| mesh[27].descriptor_name | Monitoring, Physiologic |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D055815 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Young Adult |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000293 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Adolescent |
| mesh[30].qualifier_ui | Q000379 |
| mesh[30].descriptor_ui | D019651 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | methods |
| mesh[30].descriptor_name | Plastic Surgery Procedures |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D015203 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Reproducibility of Results |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D058752 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Free Tissue Flaps |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D008297 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Male |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D001185 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Artificial Intelligence |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D005260 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Female |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D008875 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Middle Aged |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D000368 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Aged |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000328 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Adult |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D000369 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Aged, 80 and over |
| mesh[41].qualifier_ui | Q000379 |
| mesh[41].descriptor_ui | D010781 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | methods |
| mesh[41].descriptor_name | Photography |
| mesh[42].qualifier_ui | Q000379 |
| mesh[42].descriptor_ui | D008991 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | methods |
| mesh[42].descriptor_name | Monitoring, Physiologic |
| mesh[43].qualifier_ui | Q000295 |
| mesh[43].descriptor_ui | D008991 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | instrumentation |
| mesh[43].descriptor_name | Monitoring, Physiologic |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D055815 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Young Adult |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D000293 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Adolescent |
| mesh[46].qualifier_ui | Q000379 |
| mesh[46].descriptor_ui | D019651 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | methods |
| mesh[46].descriptor_name | Plastic Surgery Procedures |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D015203 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Reproducibility of Results |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D006801 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Humans |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D058752 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Free Tissue Flaps |
| type | article |
| title | Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence |
| biblio.issue | 7 |
| biblio.volume | 7 |
| biblio.last_page | e2424299 |
| biblio.first_page | e2424299 |
| topics[0].id | https://openalex.org/T10599 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Reconstructive Surgery and Microvascular Techniques |
| topics[1].id | https://openalex.org/T11636 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2718 |
| topics[1].subfield.display_name | Health Informatics |
| topics[1].display_name | Artificial Intelligence in Healthcare and Education |
| topics[2].id | https://openalex.org/T11080 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Surgical site infection prevention |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C2777286243 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5445700883865356 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[0].display_name | Grading (engineering) |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5311369299888611 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4971640408039093 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776902269 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4861390292644501 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165493 |
| concepts[3].display_name | Continuous monitoring |
| concepts[4].id | https://openalex.org/C43214815 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46795761585235596 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[4].display_name | Reliability (semiconductor) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4155520796775818 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3763974606990814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C21547014 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21266892552375793 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[7].display_name | Operations management |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12079143524169922 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C147176958 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77590 |
| concepts[11].display_name | Civil engineering |
| concepts[12].id | https://openalex.org/C163258240 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[12].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/grading |
| keywords[0].score | 0.5445700883865356 |
| keywords[0].display_name | Grading (engineering) |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.5311369299888611 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4971640408039093 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/continuous-monitoring |
| keywords[3].score | 0.4861390292644501 |
| keywords[3].display_name | Continuous monitoring |
| keywords[4].id | https://openalex.org/keywords/reliability |
| keywords[4].score | 0.46795761585235596 |
| keywords[4].display_name | Reliability (semiconductor) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4155520796775818 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.3763974606990814 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/operations-management |
| keywords[7].score | 0.21266892552375793 |
| keywords[7].display_name | Operations management |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.12079143524169922 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1001/jamanetworkopen.2024.24299 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210217848 |
| locations[0].source.issn | 2574-3805 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2574-3805 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JAMA Network Open |
| locations[0].source.host_organization | https://openalex.org/P4310320259 |
| locations[0].source.host_organization_name | American Medical Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320259 |
| locations[0].source.host_organization_lineage_names | American Medical Association |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JAMA Network Open |
| locations[0].landing_page_url | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| locations[1].id | pmid:39058486 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JAMA network open |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39058486 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11282448 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JAMA Netw Open |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11282448 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100729885 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9501-9665 |
| authorships[0].author.display_name | Ji Su Kim |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[0].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[0].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Samsung Medical Center |
| authorships[0].institutions[1].id | https://openalex.org/I848706 |
| authorships[0].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[0].institutions[1].country_code | KR |
| authorships[0].institutions[1].display_name | Sungkyunkwan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jisu Kim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[1].author.id | https://openalex.org/A5103002658 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2144-3869 |
| authorships[1].author.display_name | Sang Mee Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2802194831 |
| authorships[1].affiliations[0].raw_affiliation_string | Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2250650973, https://openalex.org/I848706 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I2250650973 |
| authorships[1].institutions[0].ror | https://ror.org/04w3jy968 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I2250650973 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Samsung (South Korea) |
| authorships[1].institutions[1].id | https://openalex.org/I2802194831 |
| authorships[1].institutions[1].ror | https://ror.org/05a15z872 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Samsung Medical Center |
| authorships[1].institutions[2].id | https://openalex.org/I848706 |
| authorships[1].institutions[2].ror | https://ror.org/04q78tk20 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I848706 |
| authorships[1].institutions[2].country_code | KR |
| authorships[1].institutions[2].display_name | Sungkyunkwan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sang Mee Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea, Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[2].author.id | https://openalex.org/A5101833147 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9233-0194 |
| authorships[2].author.display_name | Da Eun Kim |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[2].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[2].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Samsung Medical Center |
| authorships[2].institutions[1].id | https://openalex.org/I848706 |
| authorships[2].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[2].institutions[1].country_code | KR |
| authorships[2].institutions[1].display_name | Sungkyunkwan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Da Eun Kim |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[3].author.id | https://openalex.org/A5100368293 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1957-6272 |
| authorships[3].author.display_name | Sung-Jin Kim |
| authorships[3].affiliations[0].raw_affiliation_string | Banobagi Plastic Surgery Clinic, Seoul, South Korea. |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sungjin Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Banobagi Plastic Surgery Clinic, Seoul, South Korea. |
| authorships[4].author.id | https://openalex.org/A5022590014 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6271-3343 |
| authorships[4].author.display_name | Myung Jin Chung |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802194831 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Radiology and Medical AI Research Center, Samsung Medical Center, Seoul, South Korea |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I848706 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[4].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Samsung Medical Center |
| authorships[4].institutions[1].id | https://openalex.org/I848706 |
| authorships[4].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[4].institutions[1].country_code | KR |
| authorships[4].institutions[1].display_name | Sungkyunkwan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Myung Jin Chung |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea, Department of Radiology and Medical AI Research Center, Samsung Medical Center, Seoul, South Korea |
| authorships[5].author.id | https://openalex.org/A5056196451 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7104-3943 |
| authorships[5].author.display_name | Zero Kim |
| authorships[5].countries | KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2802194831 |
| authorships[5].affiliations[0].raw_affiliation_string | Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I848706 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[5].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[5].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[5].institutions[0].country_code | KR |
| authorships[5].institutions[0].display_name | Samsung Medical Center |
| authorships[5].institutions[1].id | https://openalex.org/I848706 |
| authorships[5].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[5].institutions[1].country_code | KR |
| authorships[5].institutions[1].display_name | Sungkyunkwan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zero Kim |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Data Convergence and Future Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea, Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[6].author.id | https://openalex.org/A5100376332 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2591-0129 |
| authorships[6].author.display_name | Tae Young Kim |
| authorships[6].countries | KR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2802194831 |
| authorships[6].affiliations[0].raw_affiliation_string | Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[6].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[6].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[6].institutions[0].country_code | KR |
| authorships[6].institutions[0].display_name | Samsung Medical Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Taeyoung Kim |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea |
| authorships[7].author.id | https://openalex.org/A5079514839 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9070-9296 |
| authorships[7].author.display_name | Kyeong‐Tae Lee |
| authorships[7].countries | KR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| authorships[7].institutions[0].id | https://openalex.org/I2802194831 |
| authorships[7].institutions[0].ror | https://ror.org/05a15z872 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2250650973, https://openalex.org/I2802194831 |
| authorships[7].institutions[0].country_code | KR |
| authorships[7].institutions[0].display_name | Samsung Medical Center |
| authorships[7].institutions[1].id | https://openalex.org/I848706 |
| authorships[7].institutions[1].ror | https://ror.org/04q78tk20 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I848706 |
| authorships[7].institutions[1].country_code | KR |
| authorships[7].institutions[1].display_name | Sungkyunkwan University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kyeong-Tae Lee |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10599 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Reconstructive Surgery and Microvascular Techniques |
| related_works | https://openalex.org/W2064165679, https://openalex.org/W1588461101, https://openalex.org/W3208525924, https://openalex.org/W2591833644, https://openalex.org/W2885058781, https://openalex.org/W3127248583, https://openalex.org/W1552490082, https://openalex.org/W4236439135, https://openalex.org/W2189583758, https://openalex.org/W3009904625 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1001/jamanetworkopen.2024.24299 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210217848 |
| best_oa_location.source.issn | 2574-3805 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2574-3805 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JAMA Network Open |
| best_oa_location.source.host_organization | https://openalex.org/P4310320259 |
| best_oa_location.source.host_organization_name | American Medical Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320259 |
| best_oa_location.source.host_organization_lineage_names | American Medical Association |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JAMA Network Open |
| best_oa_location.landing_page_url | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| primary_location.id | doi:10.1001/jamanetworkopen.2024.24299 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210217848 |
| primary_location.source.issn | 2574-3805 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2574-3805 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JAMA Network Open |
| primary_location.source.host_organization | https://openalex.org/P4310320259 |
| primary_location.source.host_organization_name | American Medical Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320259 |
| primary_location.source.host_organization_lineage_names | American Medical Association |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JAMA Network Open |
| primary_location.landing_page_url | https://doi.org/10.1001/jamanetworkopen.2024.24299 |
| publication_date | 2024-07-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4245057196, https://openalex.org/W3120549581, https://openalex.org/W4321497277, https://openalex.org/W2922368431, https://openalex.org/W2621170996, https://openalex.org/W3182508343, https://openalex.org/W2311970808, https://openalex.org/W4388777617, https://openalex.org/W4320855900, https://openalex.org/W4365460182, https://openalex.org/W4246459602, https://openalex.org/W6637373629, https://openalex.org/W1901129140, https://openalex.org/W1686810756, https://openalex.org/W4379382517, https://openalex.org/W2528064650 |
| referenced_works_count | 16 |
| abstract_inverted_index.2 | 121, 174 |
| abstract_inverted_index.a | 46, 80, 85, 124, 134, 189, 255, 358 |
| abstract_inverted_index.(a | 246 |
| abstract_inverted_index.1, | 166 |
| abstract_inverted_index.10 | 282, 335 |
| abstract_inverted_index.11 | 272 |
| abstract_inverted_index.62 | 230 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.It | 373 |
| abstract_inverted_index.To | 50, 146 |
| abstract_inverted_index.an | 52, 305, 380 |
| abstract_inverted_index.as | 379 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.be | 375 |
| abstract_inverted_index.if | 115 |
| abstract_inverted_index.in | 15, 84, 108, 131, 188, 192 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 32, 37, 40, 142, 209, 215, 218, 261, 313, 353, 370 |
| abstract_inverted_index.on | 240, 294 |
| abstract_inverted_index.to | 91, 168, 181, 334, 377, 393 |
| abstract_inverted_index.112 | 273 |
| abstract_inverted_index.115 | 283 |
| abstract_inverted_index.143 | 341 |
| abstract_inverted_index.178 | 235 |
| abstract_inverted_index.305 | 226, 277 |
| abstract_inverted_index.31, | 170 |
| abstract_inverted_index.997 | 289 |
| abstract_inverted_index.CI, | 316 |
| abstract_inverted_index.For | 267 |
| abstract_inverted_index.The | 97, 318, 351 |
| abstract_inverted_index.and | 11, 70, 111, 133, 206, 213, 288, 326, 349 |
| abstract_inverted_index.are | 117, 391 |
| abstract_inverted_index.for | 7, 19, 105, 127, 137, 153, 251, 320, 327, 384 |
| abstract_inverted_index.has | 23, 43 |
| abstract_inverted_index.its | 109, 395 |
| abstract_inverted_index.may | 362, 374 |
| abstract_inverted_index.the | 25, 29, 35, 76, 101, 139, 143, 173, 183, 197, 210, 219, 243, 268, 276, 297, 301, 308, 337 |
| abstract_inverted_index.use | 39, 369 |
| abstract_inverted_index.was | 186, 249, 324, 330 |
| abstract_inverted_index.who | 159 |
| abstract_inverted_index.(95% | 315 |
| abstract_inverted_index.(SD) | 257 |
| abstract_inverted_index.2068 | 241 |
| abstract_inverted_index.5506 | 295 |
| abstract_inverted_index.8-86 | 233 |
| abstract_inverted_index.Dice | 258 |
| abstract_inverted_index.Main | 204 |
| abstract_inverted_index.When | 332 |
| abstract_inverted_index.age, | 229 |
| abstract_inverted_index.area | 306 |
| abstract_inverted_index.been | 44 |
| abstract_inverted_index.flap | 3, 9, 17, 55, 89, 102, 129, 150, 201, 252, 269, 365, 387 |
| abstract_inverted_index.free | 16, 54, 161, 386 |
| abstract_inverted_index.from | 157, 164, 225, 275 |
| abstract_inverted_index.high | 30 |
| abstract_inverted_index.main | 47 |
| abstract_inverted_index.mean | 256 |
| abstract_inverted_index.that | 357 |
| abstract_inverted_index.they | 178 |
| abstract_inverted_index.this | 73, 148, 354 |
| abstract_inverted_index.time | 42 |
| abstract_inverted_index.tool | 383 |
| abstract_inverted_index.were | 155, 176, 179, 223, 237, 279 |
| abstract_inverted_index.with | 87, 264, 285, 290, 304, 367 |
| abstract_inverted_index.(AI), | 61 |
| abstract_inverted_index.0.960 | 314 |
| abstract_inverted_index.0.970 | 262 |
| abstract_inverted_index.2020, | 167 |
| abstract_inverted_index.2023. | 171, 194 |
| abstract_inverted_index.97.5% | 325 |
| abstract_inverted_index.After | 172 |
| abstract_inverted_index.Based | 239 |
| abstract_inverted_index.March | 165 |
| abstract_inverted_index.area, | 103 |
| abstract_inverted_index.curve | 312 |
| abstract_inverted_index.flap. | 145 |
| abstract_inverted_index.human | 63 |
| abstract_inverted_index.model | 126, 136, 299 |
| abstract_inverted_index.novel | 359 |
| abstract_inverted_index.serve | 378 |
| abstract_inverted_index.staff | 114 |
| abstract_inverted_index.study | 355 |
| abstract_inverted_index.time. | 372 |
| abstract_inverted_index.under | 307 |
| abstract_inverted_index.used, | 280 |
| abstract_inverted_index.using | 58 |
| abstract_inverted_index.which | 20, 185 |
| abstract_inverted_index.while | 65 |
| abstract_inverted_index.years | 231 |
| abstract_inverted_index.5-fold | 265 |
| abstract_inverted_index.92.8%. | 331 |
| abstract_inverted_index.August | 169 |
| abstract_inverted_index.FS-net | 244 |
| abstract_inverted_index.Tested | 293 |
| abstract_inverted_index.camera | 82 |
| abstract_inverted_index.checks | 104 |
| abstract_inverted_index.enable | 363 |
| abstract_inverted_index.male). | 238 |
| abstract_inverted_index.model) | 248 |
| abstract_inverted_index.models | 175, 212 |
| abstract_inverted_index.normal | 286 |
| abstract_inverted_index.status | 141 |
| abstract_inverted_index.study, | 75 |
| abstract_inverted_index.system | 57, 78, 338, 361 |
| abstract_inverted_index.venous | 322 |
| abstract_inverted_index.verify | 394 |
| abstract_inverted_index.(0.001) | 263 |
| abstract_inverted_index.(median | 228 |
| abstract_inverted_index.Design, | 68 |
| abstract_inverted_index.Despite | 28 |
| abstract_inverted_index.Further | 389 |
| abstract_inverted_index.Results | 221 |
| abstract_inverted_index.[58.4%] | 236 |
| abstract_inverted_index.[range, | 232 |
| abstract_inverted_index.applied | 187, 333 |
| abstract_inverted_index.capture | 92 |
| abstract_inverted_index.develop | 51, 147 |
| abstract_inverted_index.failure | 10 |
| abstract_inverted_index.grading | 135, 270 |
| abstract_inverted_index.highest | 302 |
| abstract_inverted_index.issues. | 347 |
| abstract_inverted_index.medical | 113 |
| abstract_inverted_index.minimal | 368 |
| abstract_inverted_index.models: | 123 |
| abstract_inverted_index.notable | 106 |
| abstract_inverted_index.optimal | 13, 88 |
| abstract_inverted_index.program | 99, 245 |
| abstract_inverted_index.regular | 95 |
| abstract_inverted_index.results | 14 |
| abstract_inverted_index.setting | 191 |
| abstract_inverted_index.studies | 390 |
| abstract_inverted_index.suggest | 356 |
| abstract_inverted_index.system, | 149, 184, 271 |
| abstract_inverted_index.system. | 203, 220 |
| abstract_inverted_index.without | 345 |
| abstract_inverted_index.years]; | 234 |
| abstract_inverted_index.AI-based | 122, 200 |
| abstract_inverted_index.Accuracy | 208 |
| abstract_inverted_index.Exposure | 195 |
| abstract_inverted_index.Measures | 207 |
| abstract_inverted_index.November | 193 |
| abstract_inverted_index.Outcomes | 205 |
| abstract_inverted_index.Setting, | 69 |
| abstract_inverted_index.abnormal | 291 |
| abstract_inverted_index.arterial | 328 |
| abstract_inverted_index.captured | 152 |
| abstract_inverted_index.clinical | 190, 216 |
| abstract_inverted_index.designed | 77 |
| abstract_inverted_index.features | 287 |
| abstract_inverted_index.findings | 352 |
| abstract_inverted_index.involves | 79 |
| abstract_inverted_index.location | 86 |
| abstract_inverted_index.notifies | 112 |
| abstract_inverted_index.obtained | 224 |
| abstract_inverted_index.patients | 158, 227, 278 |
| abstract_inverted_index.physical | 21, 33 |
| abstract_inverted_index.receiver | 309 |
| abstract_inverted_index.remained | 24 |
| abstract_inverted_index.required | 392 |
| abstract_inverted_index.requires | 120 |
| abstract_inverted_index.sessions | 344 |
| abstract_inverted_index.Objective | 49 |
| abstract_inverted_index.Relevance | 350 |
| abstract_inverted_index.achieving | 12 |
| abstract_inverted_index.automated | 53, 98, 199, 342, 360 |
| abstract_inverted_index.automatic | 128 |
| abstract_inverted_index.clinician | 41, 371 |
| abstract_inverted_index.collected | 156 |
| abstract_inverted_index.conducted | 340 |
| abstract_inverted_index.construct | 182 |
| abstract_inverted_index.criterion | 26 |
| abstract_inverted_index.detected. | 118 |
| abstract_inverted_index.detecting | 321 |
| abstract_inverted_index.developed | 198, 211, 250 |
| abstract_inverted_index.drawback. | 48 |
| abstract_inverted_index.effective | 381 |
| abstract_inverted_index.efficient | 364 |
| abstract_inverted_index.essential | 6 |
| abstract_inverted_index.excessive | 38 |
| abstract_inverted_index.features. | 292 |
| abstract_inverted_index.installed | 83 |
| abstract_inverted_index.operating | 310 |
| abstract_inverted_index.patients, | 336 |
| abstract_inverted_index.perfusion | 140 |
| abstract_inverted_index.standard. | 27 |
| abstract_inverted_index.underwent | 160 |
| abstract_inverted_index.Conducting | 196 |
| abstract_inverted_index.Importance | 0 |
| abstract_inverted_index.Meticulous | 1 |
| abstract_inverted_index.artificial | 59 |
| abstract_inverted_index.considered | 45 |
| abstract_inverted_index.customized | 247 |
| abstract_inverted_index.developed, | 177 |
| abstract_inverted_index.evaluating | 138 |
| abstract_inverted_index.identified | 144 |
| abstract_inverted_index.identifies | 100 |
| abstract_inverted_index.integrated | 180 |
| abstract_inverted_index.intervals. | 96 |
| abstract_inverted_index.minimizing | 62 |
| abstract_inverted_index.monitoring | 4, 56, 154, 202, 343, 366 |
| abstract_inverted_index.preventing | 8 |
| abstract_inverted_index.prognostic | 74 |
| abstract_inverted_index.similarity | 259 |
| abstract_inverted_index.smartphone | 81 |
| abstract_inverted_index.visibility | 90 |
| abstract_inverted_index.Conclusions | 348 |
| abstract_inverted_index.DenseNet121 | 298 |
| abstract_inverted_index.Photographs | 222 |
| abstract_inverted_index.anticipated | 376 |
| abstract_inverted_index.appearance, | 110 |
| abstract_inverted_index.application | 217 |
| abstract_inverted_index.coefficient | 260 |
| abstract_inverted_index.efficiency. | 67 |
| abstract_inverted_index.examination | 22 |
| abstract_inverted_index.feasibility | 214 |
| abstract_inverted_index.involvement | 64 |
| abstract_inverted_index.maintaining | 66 |
| abstract_inverted_index.monitoring. | 388 |
| abstract_inverted_index.operations, | 18 |
| abstract_inverted_index.performance | 303 |
| abstract_inverted_index.photographs | 93, 132, 151, 274, 284 |
| abstract_inverted_index.recognition | 130 |
| abstract_inverted_index.reliability | 31 |
| abstract_inverted_index.requirement | 36 |
| abstract_inverted_index.sensitivity | 319 |
| abstract_inverted_index.significant | 346 |
| abstract_inverted_index.Participants | 71 |
| abstract_inverted_index.demonstrated | 300 |
| abstract_inverted_index.encompassing | 281 |
| abstract_inverted_index.examination, | 34 |
| abstract_inverted_index.flap–based | 162 |
| abstract_inverted_index.intelligence | 60 |
| abstract_inverted_index.photographs, | 242, 296 |
| abstract_inverted_index.reliability. | 396 |
| abstract_inverted_index.segmentation | 125 |
| abstract_inverted_index.successfully | 339 |
| abstract_inverted_index.surveillance | 382 |
| abstract_inverted_index.0.951-0.969). | 317 |
| abstract_inverted_index.abnormalities | 107, 116 |
| abstract_inverted_index.demonstrating | 254 |
| abstract_inverted_index.insufficiency | 323, 329 |
| abstract_inverted_index.postoperative | 2, 385 |
| abstract_inverted_index.segmentation, | 253 |
| abstract_inverted_index.Implementation | 119 |
| abstract_inverted_index.characteristic | 311 |
| abstract_inverted_index.reconstruction | 163 |
| abstract_inverted_index.cross-validation. | 266 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5079514839, https://openalex.org/A5100376332 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I2802194831, https://openalex.org/I848706 |
| citation_normalized_percentile.value | 0.99368997 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |