Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.gce.2024.07.003
This study aims to significantly improve existing quantitative structure-property relationship (QSPR) models for predicting the octanol-water partition coefficient (KOW). This is because accurate predictions of KOW are crucial for assessing the environmental behavior and bioaccumulation potential of chemicals. Previous models have reported determination coefficient (R2) values between 0.9451 and 0.9681, and this research seeks to exceed these benchmarks. Three machine learning (ML) models are explored, i.e., feed-forward neural networks (FNN), extreme gradient boosting (XGBoost), and random forest (RF). Using a dataset of 14,610 solvents (14,580 after data cleaning) and 21 molecular descriptors derived from SMILES representations, we rigorously evaluate these models based on R2, mean absolute error (MAE), root mean squared error (RMSE), and mean relative error (MRE). Notably, the best model developed, the XGBoost-based QSPR, demonstrated exceptional performance, exhibiting an impressive R2 value of 0.9772, surpassing benchmarks set by prior research models. Additionally, shapley additive explanation (SHAP) analysis is also employed for model interpretation, and it is revealed that the top five influential input features include SMR_VSA8, SMR_VSA3, Kappa2, HeavyAtomCount, and fr_furan. This study not only sets a new benchmark for KOW prediction accuracy but also enhances the interpretability of QSPR models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.gce.2024.07.003
- OA Status
- diamond
- Cited By
- 3
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400875490
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400875490Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.gce.2024.07.003Digital Object Identifier
- Title
-
Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-22Full publication date if available
- Authors
-
Ao Yang, Shirui Sun, Qi Lu, Zong Yang Kong, Jaka Sunarso, Weifeng ShenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.gce.2024.07.003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.gce.2024.07.003Direct OA link when available
- Concepts
-
Quantitative structure–activity relationship, Interpretability, Mean squared error, Artificial neural network, Random forest, Partition coefficient, Artificial intelligence, Octanol, Mathematics, Machine learning, Computer science, Statistics, Chemistry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400875490 |
|---|---|
| doi | https://doi.org/10.1016/j.gce.2024.07.003 |
| ids.doi | https://doi.org/10.1016/j.gce.2024.07.003 |
| ids.openalex | https://openalex.org/W4400875490 |
| fwci | 2.37040672 |
| type | article |
| title | Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms |
| awards[0].id | https://openalex.org/G7870993493 |
| awards[0].funder_id | https://openalex.org/F4320327630 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022CQBSHTB3047 |
| awards[0].funder_display_name | Special Fund of Chongqing Key Laboratory |
| awards[1].id | https://openalex.org/G2600951718 |
| awards[1].funder_id | https://openalex.org/F4320317775 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2024T171135 |
| awards[1].funder_display_name | Tianjin Postdoctoral Science Foundation |
| awards[2].id | https://openalex.org/G296769760 |
| awards[2].funder_id | https://openalex.org/F4320326181 |
| awards[2].display_name | |
| awards[2].funder_award_id | 22378030 |
| awards[2].funder_display_name | National Aerospace Science Foundation of China |
| awards[3].id | https://openalex.org/G6441134985 |
| awards[3].funder_id | https://openalex.org/F4320317775 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2024M754114 |
| awards[3].funder_display_name | Tianjin Postdoctoral Science Foundation |
| awards[4].id | https://openalex.org/G5332979028 |
| awards[4].funder_id | https://openalex.org/F4320335595 |
| awards[4].display_name | |
| awards[4].funder_award_id | CSTB2022NSCQ-MSX0655 |
| awards[4].funder_display_name | National Natural Science Foundation of China-Yunnan Joint Fund |
| awards[5].id | https://openalex.org/G6170246204 |
| awards[5].funder_id | https://openalex.org/F4320326181 |
| awards[5].display_name | |
| awards[5].funder_award_id | 22308037 |
| awards[5].funder_display_name | National Aerospace Science Foundation of China |
| awards[6].id | https://openalex.org/G3333709804 |
| awards[6].funder_id | https://openalex.org/F4320326181 |
| awards[6].display_name | |
| awards[6].funder_award_id | 22122802 |
| awards[6].funder_display_name | National Aerospace Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 6 |
| biblio.last_page | 199 |
| biblio.first_page | 193 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T14249 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9803000092506409 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2311 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Water Quality Monitoring and Analysis |
| topics[2].id | https://openalex.org/T10908 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1607 |
| topics[2].subfield.display_name | Spectroscopy |
| topics[2].display_name | Analytical Chemistry and Chromatography |
| funders[0].id | https://openalex.org/F4320317775 |
| funders[0].ror | |
| funders[0].display_name | Tianjin Postdoctoral Science Foundation |
| funders[1].id | https://openalex.org/F4320326181 |
| funders[1].ror | |
| funders[1].display_name | National Aerospace Science Foundation of China |
| funders[2].id | https://openalex.org/F4320327630 |
| funders[2].ror | |
| funders[2].display_name | Special Fund of Chongqing Key Laboratory |
| funders[3].id | https://openalex.org/F4320333688 |
| funders[3].ror | |
| funders[3].display_name | National Outstanding Youth Science Fund Project of National Natural Science Foundation of China |
| funders[4].id | https://openalex.org/F4320335595 |
| funders[4].ror | |
| funders[4].display_name | National Natural Science Foundation of China-Yunnan Joint Fund |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C164126121 |
| concepts[0].level | 2 |
| concepts[0].score | 0.863441526889801 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q766383 |
| concepts[0].display_name | Quantitative structure–activity relationship |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7919813394546509 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6499212980270386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5274341702461243 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5138071179389954 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C192552737 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49630028009414673 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q898797 |
| concepts[5].display_name | Partition coefficient |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4272753596305847 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776226600 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4106519818305969 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6048561 |
| concepts[7].display_name | Octanol |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4018973112106323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40019822120666504 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.38862597942352295 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2628980278968811 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1791696846485138 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C43617362 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[13].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/quantitative-structure–activity-relationship |
| keywords[0].score | 0.863441526889801 |
| keywords[0].display_name | Quantitative structure–activity relationship |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.7919813394546509 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.6499212980270386 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5274341702461243 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5138071179389954 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/partition-coefficient |
| keywords[5].score | 0.49630028009414673 |
| keywords[5].display_name | Partition coefficient |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4272753596305847 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/octanol |
| keywords[7].score | 0.4106519818305969 |
| keywords[7].display_name | Octanol |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4018973112106323 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.40019822120666504 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.38862597942352295 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.2628980278968811 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.1791696846485138 |
| keywords[12].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1016/j.gce.2024.07.003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210218186 |
| locations[0].source.issn | 2096-9147, 2666-9528 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-9147 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Green Chemical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Green Chemical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.gce.2024.07.003 |
| locations[1].id | pmh:oai:doaj.org/article:cff8ed9d9c0b43f6a6ba6dff069962ce |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Green Chemical Engineering, Vol 6, Iss 2, Pp 193-199 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/cff8ed9d9c0b43f6a6ba6dff069962ce |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5034757384 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8867-1375 |
| authorships[0].author.display_name | Ao Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I168337820 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I125839683, https://openalex.org/I50632499 |
| authorships[0].affiliations[2].raw_affiliation_string | Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401135, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I158842170 |
| authorships[0].institutions[1].ror | https://ror.org/023rhb549 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I158842170 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chongqing University |
| authorships[0].institutions[2].id | https://openalex.org/I168337820 |
| authorships[0].institutions[2].ror | https://ror.org/03n3v6d52 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I168337820 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Chongqing University of Science and Technology |
| authorships[0].institutions[3].id | https://openalex.org/I50632499 |
| authorships[0].institutions[3].ror | https://ror.org/04vgbd477 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I50632499 |
| authorships[0].institutions[3].country_code | CN |
| authorships[0].institutions[3].display_name | Chongqing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ao Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401135, China, College of Safety Science and Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China |
| authorships[1].author.id | https://openalex.org/A5103176874 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2934-2907 |
| authorships[1].author.display_name | Shirui Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32377083 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China |
| authorships[1].institutions[0].id | https://openalex.org/I32377083 |
| authorships[1].institutions[0].ror | https://ror.org/05v8v7d33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I32377083 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yangtze Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shirui Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China |
| authorships[2].author.id | https://openalex.org/A5101958491 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1741-9281 |
| authorships[2].author.display_name | Qi Lu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[2].affiliations[0].raw_affiliation_string | Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Changzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lu Qi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China |
| authorships[3].author.id | https://openalex.org/A5019010033 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4846-2744 |
| authorships[3].author.display_name | Zong Yang Kong |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I84339108 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I84339108 |
| authorships[3].institutions[0].ror | https://ror.org/04mjt7f73 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I84339108 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Sunway University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zong Yang Kong |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia |
| authorships[4].author.id | https://openalex.org/A5004917138 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5234-7431 |
| authorships[4].author.display_name | Jaka Sunarso |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I96413208 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I96413208 |
| authorships[4].institutions[0].ror | https://ror.org/014cjmc76 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I57093077, https://openalex.org/I96413208 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | Swinburne University of Technology Sarawak Campus |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jaka Sunarso |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia |
| authorships[5].author.id | https://openalex.org/A5013863365 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0418-6848 |
| authorships[5].author.display_name | Weifeng Shen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I158842170 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China |
| authorships[5].institutions[0].id | https://openalex.org/I158842170 |
| authorships[5].institutions[0].ror | https://ror.org/023rhb549 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I158842170 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chongqing University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Weifeng Shen |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.gce.2024.07.003 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of an interpretable QSPR model to predict the octanol-water partition coefficient based on three artificial intelligence algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4361806667, https://openalex.org/W2061099817, https://openalex.org/W3152149308, https://openalex.org/W2094814511, https://openalex.org/W2005331435, https://openalex.org/W3003573373, https://openalex.org/W4389085959, https://openalex.org/W4379536151, https://openalex.org/W2382819070, https://openalex.org/W2061956849 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.gce.2024.07.003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210218186 |
| best_oa_location.source.issn | 2096-9147, 2666-9528 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-9147 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Green Chemical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Green Chemical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.gce.2024.07.003 |
| primary_location.id | doi:10.1016/j.gce.2024.07.003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210218186 |
| primary_location.source.issn | 2096-9147, 2666-9528 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-9147 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Green Chemical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Green Chemical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.gce.2024.07.003 |
| publication_date | 2024-07-22 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2002311592, https://openalex.org/W2049921884, https://openalex.org/W4366779602, https://openalex.org/W3008775157, https://openalex.org/W2757568157, https://openalex.org/W2043063120, https://openalex.org/W3007829240, https://openalex.org/W3210879372, https://openalex.org/W4210397882, https://openalex.org/W2077486207, https://openalex.org/W3160026094, https://openalex.org/W6858163207, https://openalex.org/W3116651029, https://openalex.org/W4212862884, https://openalex.org/W6842796650, https://openalex.org/W3007640208, https://openalex.org/W2963295149, https://openalex.org/W4210645628, https://openalex.org/W4317433724, https://openalex.org/W3167275903, https://openalex.org/W4294243246, https://openalex.org/W2090996511, https://openalex.org/W3195820802, https://openalex.org/W6866910370, https://openalex.org/W6861376256, https://openalex.org/W4386593424, https://openalex.org/W4397289092, https://openalex.org/W4383896362, https://openalex.org/W3114912503, https://openalex.org/W2947764583, https://openalex.org/W2999454031, https://openalex.org/W6791852974, https://openalex.org/W3021934323, https://openalex.org/W4200107191, https://openalex.org/W6797183507, https://openalex.org/W3010156620, https://openalex.org/W4249421834, https://openalex.org/W4379402360, https://openalex.org/W4210883242, https://openalex.org/W3172587371, https://openalex.org/W2914874661, https://openalex.org/W3138536350, https://openalex.org/W4294883994, https://openalex.org/W4391545084, https://openalex.org/W4388461882, https://openalex.org/W4396939537 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 79, 178 |
| abstract_inverted_index.21 | 89 |
| abstract_inverted_index.R2 | 132 |
| abstract_inverted_index.an | 130 |
| abstract_inverted_index.by | 139 |
| abstract_inverted_index.is | 20, 149, 157 |
| abstract_inverted_index.it | 156 |
| abstract_inverted_index.of | 24, 36, 81, 134, 190 |
| abstract_inverted_index.on | 102 |
| abstract_inverted_index.to | 3, 54 |
| abstract_inverted_index.we | 96 |
| abstract_inverted_index.KOW | 25, 182 |
| abstract_inverted_index.R2, | 103 |
| abstract_inverted_index.and | 33, 48, 50, 74, 88, 113, 155, 171 |
| abstract_inverted_index.are | 26, 63 |
| abstract_inverted_index.but | 185 |
| abstract_inverted_index.for | 12, 28, 152, 181 |
| abstract_inverted_index.new | 179 |
| abstract_inverted_index.not | 175 |
| abstract_inverted_index.set | 138 |
| abstract_inverted_index.the | 14, 30, 119, 123, 160, 188 |
| abstract_inverted_index.top | 161 |
| abstract_inverted_index.(ML) | 61 |
| abstract_inverted_index.(R2) | 44 |
| abstract_inverted_index.QSPR | 191 |
| abstract_inverted_index.This | 0, 19, 173 |
| abstract_inverted_index.aims | 2 |
| abstract_inverted_index.also | 150, 186 |
| abstract_inverted_index.best | 120 |
| abstract_inverted_index.data | 86 |
| abstract_inverted_index.five | 162 |
| abstract_inverted_index.from | 93 |
| abstract_inverted_index.have | 40 |
| abstract_inverted_index.mean | 104, 109, 114 |
| abstract_inverted_index.only | 176 |
| abstract_inverted_index.root | 108 |
| abstract_inverted_index.sets | 177 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.(RF). | 77 |
| abstract_inverted_index.QSPR, | 125 |
| abstract_inverted_index.Three | 58 |
| abstract_inverted_index.Using | 78 |
| abstract_inverted_index.after | 85 |
| abstract_inverted_index.based | 101 |
| abstract_inverted_index.error | 106, 111, 116 |
| abstract_inverted_index.i.e., | 65 |
| abstract_inverted_index.input | 164 |
| abstract_inverted_index.model | 121, 153 |
| abstract_inverted_index.prior | 140 |
| abstract_inverted_index.seeks | 53 |
| abstract_inverted_index.study | 1, 174 |
| abstract_inverted_index.these | 56, 99 |
| abstract_inverted_index.value | 133 |
| abstract_inverted_index.(FNN), | 69 |
| abstract_inverted_index.(KOW). | 18 |
| abstract_inverted_index.(MAE), | 107 |
| abstract_inverted_index.(MRE). | 117 |
| abstract_inverted_index.(QSPR) | 10 |
| abstract_inverted_index.(SHAP) | 147 |
| abstract_inverted_index.0.9451 | 47 |
| abstract_inverted_index.14,610 | 82 |
| abstract_inverted_index.SMILES | 94 |
| abstract_inverted_index.exceed | 55 |
| abstract_inverted_index.forest | 76 |
| abstract_inverted_index.models | 11, 39, 62, 100 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.random | 75 |
| abstract_inverted_index.values | 45 |
| abstract_inverted_index.(14,580 | 84 |
| abstract_inverted_index.(RMSE), | 112 |
| abstract_inverted_index.0.9681, | 49 |
| abstract_inverted_index.0.9772, | 135 |
| abstract_inverted_index.Kappa2, | 169 |
| abstract_inverted_index.because | 21 |
| abstract_inverted_index.between | 46 |
| abstract_inverted_index.crucial | 27 |
| abstract_inverted_index.dataset | 80 |
| abstract_inverted_index.derived | 92 |
| abstract_inverted_index.extreme | 70 |
| abstract_inverted_index.improve | 5 |
| abstract_inverted_index.include | 166 |
| abstract_inverted_index.machine | 59 |
| abstract_inverted_index.models. | 142, 192 |
| abstract_inverted_index.shapley | 144 |
| abstract_inverted_index.squared | 110 |
| abstract_inverted_index.Notably, | 118 |
| abstract_inverted_index.Previous | 38 |
| abstract_inverted_index.absolute | 105 |
| abstract_inverted_index.accuracy | 184 |
| abstract_inverted_index.accurate | 22 |
| abstract_inverted_index.additive | 145 |
| abstract_inverted_index.analysis | 148 |
| abstract_inverted_index.behavior | 32 |
| abstract_inverted_index.boosting | 72 |
| abstract_inverted_index.employed | 151 |
| abstract_inverted_index.enhances | 187 |
| abstract_inverted_index.evaluate | 98 |
| abstract_inverted_index.existing | 6 |
| abstract_inverted_index.features | 165 |
| abstract_inverted_index.gradient | 71 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.networks | 68 |
| abstract_inverted_index.relative | 115 |
| abstract_inverted_index.reported | 41 |
| abstract_inverted_index.research | 52, 141 |
| abstract_inverted_index.revealed | 158 |
| abstract_inverted_index.solvents | 83 |
| abstract_inverted_index.SMR_VSA3, | 168 |
| abstract_inverted_index.SMR_VSA8, | 167 |
| abstract_inverted_index.assessing | 29 |
| abstract_inverted_index.benchmark | 180 |
| abstract_inverted_index.cleaning) | 87 |
| abstract_inverted_index.explored, | 64 |
| abstract_inverted_index.fr_furan. | 172 |
| abstract_inverted_index.molecular | 90 |
| abstract_inverted_index.partition | 16 |
| abstract_inverted_index.potential | 35 |
| abstract_inverted_index.(XGBoost), | 73 |
| abstract_inverted_index.benchmarks | 137 |
| abstract_inverted_index.chemicals. | 37 |
| abstract_inverted_index.developed, | 122 |
| abstract_inverted_index.exhibiting | 129 |
| abstract_inverted_index.impressive | 131 |
| abstract_inverted_index.predicting | 13 |
| abstract_inverted_index.prediction | 183 |
| abstract_inverted_index.rigorously | 97 |
| abstract_inverted_index.surpassing | 136 |
| abstract_inverted_index.benchmarks. | 57 |
| abstract_inverted_index.coefficient | 17, 43 |
| abstract_inverted_index.descriptors | 91 |
| abstract_inverted_index.exceptional | 127 |
| abstract_inverted_index.explanation | 146 |
| abstract_inverted_index.influential | 163 |
| abstract_inverted_index.predictions | 23 |
| abstract_inverted_index.demonstrated | 126 |
| abstract_inverted_index.feed-forward | 66 |
| abstract_inverted_index.performance, | 128 |
| abstract_inverted_index.quantitative | 7 |
| abstract_inverted_index.relationship | 9 |
| abstract_inverted_index.Additionally, | 143 |
| abstract_inverted_index.XGBoost-based | 124 |
| abstract_inverted_index.determination | 42 |
| abstract_inverted_index.environmental | 31 |
| abstract_inverted_index.octanol-water | 15 |
| abstract_inverted_index.significantly | 4 |
| abstract_inverted_index.HeavyAtomCount, | 170 |
| abstract_inverted_index.bioaccumulation | 34 |
| abstract_inverted_index.interpretation, | 154 |
| abstract_inverted_index.interpretability | 189 |
| abstract_inverted_index.representations, | 95 |
| abstract_inverted_index.structure-property | 8 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5019010033, https://openalex.org/A5013863365 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I158842170, https://openalex.org/I84339108 |
| citation_normalized_percentile.value | 0.83551574 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |