Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleum Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.csite.2023.103574
For hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with a RMSE of 1.38 × 10−2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions are estimated in different ranges of temperatures and pressures of 150 °C–350 °C and 1.2 MPa–10.8 MPa, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.csite.2023.103574
- OA Status
- gold
- Cited By
- 6
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387233856
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387233856Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.csite.2023.103574Digital Object Identifier
- Title
-
Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleumWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-01Full publication date if available
- Authors
-
Abdulrahman Sumayli, Saad M. AlshahraniList of authors in order
- Landing page
-
https://doi.org/10.1016/j.csite.2023.103574Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.csite.2023.103574Direct OA link when available
- Concepts
-
Solubility, Hydrogen, Computer science, Support vector machine, Ridge, Mean squared error, Petroleum, Process (computing), Computation, Process engineering, Algorithm, Environmental science, Machine learning, Chemistry, Mathematics, Geology, Organic chemistry, Statistics, Engineering, Paleontology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387233856 |
|---|---|
| doi | https://doi.org/10.1016/j.csite.2023.103574 |
| ids.doi | https://doi.org/10.1016/j.csite.2023.103574 |
| ids.openalex | https://openalex.org/W4387233856 |
| fwci | 1.26605806 |
| type | article |
| title | Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleum |
| awards[0].id | https://openalex.org/G609978879 |
| awards[0].funder_id | https://openalex.org/F4320323502 |
| awards[0].funder_award_id | NU/DRP/SERC/12/15 |
| awards[0].funder_display_name | Najran University |
| awards[1].id | https://openalex.org/G2246833281 |
| awards[1].funder_id | https://openalex.org/F4320311227 |
| awards[1].funder_award_id | PSAU/2023/R/1444 |
| awards[1].funder_display_name | Prince Sattam bin Abdulaziz University |
| biblio.issue | |
| biblio.volume | 51 |
| biblio.last_page | 103574 |
| biblio.first_page | 103574 |
| grants[0].funder | https://openalex.org/F4320311227 |
| grants[0].award_id | PSAU/2023/R/1444 |
| grants[0].funder_display_name | Prince Sattam bin Abdulaziz University |
| grants[1].funder | https://openalex.org/F4320323502 |
| grants[1].award_id | NU/DRP/SERC/12/15 |
| grants[1].funder_display_name | Najran University |
| topics[0].id | https://openalex.org/T11630 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.993399977684021 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Petroleum Processing and Analysis |
| topics[1].id | https://openalex.org/T12567 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9861000180244446 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Heat transfer and supercritical fluids |
| topics[2].id | https://openalex.org/T10597 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.965399980545044 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Nuclear reactor physics and engineering |
| funders[0].id | https://openalex.org/F4320311227 |
| funders[0].ror | https://ror.org/04jt46d36 |
| funders[0].display_name | Prince Sattam bin Abdulaziz University |
| funders[1].id | https://openalex.org/F4320323502 |
| funders[1].ror | https://ror.org/05edw4a90 |
| funders[1].display_name | Najran University |
| is_xpac | False |
| apc_list.value | 700 |
| apc_list.currency | USD |
| apc_list.value_usd | 700 |
| apc_paid.value | 700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 700 |
| concepts[0].id | https://openalex.org/C155574463 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8400779962539673 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170731 |
| concepts[0].display_name | Solubility |
| concepts[1].id | https://openalex.org/C512968161 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49244293570518494 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q556 |
| concepts[1].display_name | Hydrogen |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4830682575702667 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C12267149 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48181262612342834 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[3].display_name | Support vector machine |
| concepts[4].id | https://openalex.org/C32277403 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4652254283428192 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q740445 |
| concepts[4].display_name | Ridge |
| concepts[5].id | https://openalex.org/C139945424 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45645496249198914 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[5].display_name | Mean squared error |
| concepts[6].id | https://openalex.org/C548895740 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4398152530193329 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22656 |
| concepts[6].display_name | Petroleum |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42262518405914307 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C45374587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42060378193855286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[8].display_name | Computation |
| concepts[9].id | https://openalex.org/C21880701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38185372948646545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[9].display_name | Process engineering |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35120177268981934 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C39432304 |
| concepts[11].level | 0 |
| concepts[11].score | 0.32981887459754944 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[11].display_name | Environmental science |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.30164384841918945 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2699083685874939 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19329485297203064 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.15848791599273682 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1327855885028839 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.1265968382358551 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0765666663646698 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/solubility |
| keywords[0].score | 0.8400779962539673 |
| keywords[0].display_name | Solubility |
| keywords[1].id | https://openalex.org/keywords/hydrogen |
| keywords[1].score | 0.49244293570518494 |
| keywords[1].display_name | Hydrogen |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4830682575702667 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/support-vector-machine |
| keywords[3].score | 0.48181262612342834 |
| keywords[3].display_name | Support vector machine |
| keywords[4].id | https://openalex.org/keywords/ridge |
| keywords[4].score | 0.4652254283428192 |
| keywords[4].display_name | Ridge |
| keywords[5].id | https://openalex.org/keywords/mean-squared-error |
| keywords[5].score | 0.45645496249198914 |
| keywords[5].display_name | Mean squared error |
| keywords[6].id | https://openalex.org/keywords/petroleum |
| keywords[6].score | 0.4398152530193329 |
| keywords[6].display_name | Petroleum |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.42262518405914307 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/computation |
| keywords[8].score | 0.42060378193855286 |
| keywords[8].display_name | Computation |
| keywords[9].id | https://openalex.org/keywords/process-engineering |
| keywords[9].score | 0.38185372948646545 |
| keywords[9].display_name | Process engineering |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.35120177268981934 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/environmental-science |
| keywords[11].score | 0.32981887459754944 |
| keywords[11].display_name | Environmental science |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.30164384841918945 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.2699083685874939 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.19329485297203064 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/geology |
| keywords[15].score | 0.15848791599273682 |
| keywords[15].display_name | Geology |
| keywords[16].id | https://openalex.org/keywords/organic-chemistry |
| keywords[16].score | 0.1327855885028839 |
| keywords[16].display_name | Organic chemistry |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.1265968382358551 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.0765666663646698 |
| keywords[18].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.csite.2023.103574 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764363796 |
| locations[0].source.issn | 2214-157X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2214-157X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Case Studies in Thermal Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Case Studies in Thermal Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.csite.2023.103574 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061190236 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abdulrahman Sumayli |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47164929 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I47164929 |
| authorships[0].institutions[0].ror | https://ror.org/05edw4a90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47164929 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | Najran University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdulrahman Sumayli |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5026936130 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9065-6342 |
| authorships[1].author.display_name | Saad M. Alshahrani |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I142608572 |
| authorships[1].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Saad M. Alshahrani |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.csite.2023.103574 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of computational approach for calculation of hydrogen solubility in hydrocarbons for treatment of petroleum |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11630 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.993399977684021 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Petroleum Processing and Analysis |
| related_works | https://openalex.org/W1990608904, https://openalex.org/W1539400370, https://openalex.org/W2007219878, https://openalex.org/W1934224411, https://openalex.org/W1561807720, https://openalex.org/W2005109573, https://openalex.org/W2312308847, https://openalex.org/W2393951301, https://openalex.org/W2006697860, https://openalex.org/W2080187647 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.csite.2023.103574 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764363796 |
| best_oa_location.source.issn | 2214-157X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2214-157X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Case Studies in Thermal Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Case Studies in Thermal Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.csite.2023.103574 |
| primary_location.id | doi:10.1016/j.csite.2023.103574 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764363796 |
| primary_location.source.issn | 2214-157X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2214-157X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Case Studies in Thermal Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Case Studies in Thermal Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.csite.2023.103574 |
| publication_date | 2023-10-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4302024152, https://openalex.org/W4220981587, https://openalex.org/W4310950572, https://openalex.org/W4214586880, https://openalex.org/W4322101974, https://openalex.org/W2503126452, https://openalex.org/W2580061642, https://openalex.org/W2794472508, https://openalex.org/W4296422460, https://openalex.org/W3212748319, https://openalex.org/W4295960244, https://openalex.org/W2290883490, https://openalex.org/W2331241569, https://openalex.org/W4239510810, https://openalex.org/W6798993050, https://openalex.org/W2063216290, https://openalex.org/W6680532697, https://openalex.org/W2753671882, https://openalex.org/W2284731747, https://openalex.org/W6634318372, https://openalex.org/W3198024082, https://openalex.org/W1502922572, https://openalex.org/W6766763557, https://openalex.org/W2011873184, https://openalex.org/W1977234485, https://openalex.org/W2016210396, https://openalex.org/W6804549830, https://openalex.org/W1981432147, https://openalex.org/W4385305672, https://openalex.org/W4360948923, https://openalex.org/W1528620860, https://openalex.org/W3186015590, https://openalex.org/W2137226992, https://openalex.org/W3215109731, https://openalex.org/W1571870753, https://openalex.org/W4211049957, https://openalex.org/W4212863985, https://openalex.org/W1172736100 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 97, 130 |
| abstract_inverted_index.H2 | 22 |
| abstract_inverted_index.To | 75 |
| abstract_inverted_index.We | 19, 92 |
| abstract_inverted_index.an | 137 |
| abstract_inverted_index.as | 42 |
| abstract_inverted_index.be | 160 |
| abstract_inverted_index.in | 9, 25, 102, 155, 162, 173, 181 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 6, 17, 82, 99, 132, 139, 152, 165, 171, 184, 188 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.to | 13, 45 |
| abstract_inverted_index.we | 57, 106 |
| abstract_inverted_index.× | 134 |
| abstract_inverted_index.1.2 | 193 |
| abstract_inverted_index.150 | 189 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.Our | 114 |
| abstract_inverted_index.WOA | 123 |
| abstract_inverted_index.and | 37, 70, 105, 136, 186, 192 |
| abstract_inverted_index.are | 179 |
| abstract_inverted_index.can | 148 |
| abstract_inverted_index.oil | 29, 177 |
| abstract_inverted_index.the | 4, 15, 21, 43, 46, 49, 53, 77, 80, 87, 94, 118, 125, 163, 169, 174 |
| abstract_inverted_index.was | 52 |
| abstract_inverted_index.°C | 191 |
| abstract_inverted_index.(H2) | 8 |
| abstract_inverted_index.1.38 | 133 |
| abstract_inverted_index.MPa, | 195 |
| abstract_inverted_index.RMSE | 131 |
| abstract_inverted_index.best | 78, 126 |
| abstract_inverted_index.four | 26, 175 |
| abstract_inverted_index.show | 116 |
| abstract_inverted_index.sole | 54 |
| abstract_inverted_index.that | 117, 144 |
| abstract_inverted_index.type | 39 |
| abstract_inverted_index.were | 40 |
| abstract_inverted_index.with | 122, 129 |
| abstract_inverted_index.These | 141 |
| abstract_inverted_index.based | 110 |
| abstract_inverted_index.could | 159 |
| abstract_inverted_index.crude | 28 |
| abstract_inverted_index.heavy | 27, 176 |
| abstract_inverted_index.model | 120 |
| abstract_inverted_index.ridge | 72 |
| abstract_inverted_index.their | 108 |
| abstract_inverted_index.these | 83 |
| abstract_inverted_index.three | 59 |
| abstract_inverted_index.tuned | 121 |
| abstract_inverted_index.using | 31, 86, 96 |
| abstract_inverted_index.whale | 88 |
| abstract_inverted_index.which | 158 |
| abstract_inverted_index.while | 48 |
| abstract_inverted_index.(BRR). | 74 |
| abstract_inverted_index.(GPR), | 69 |
| abstract_inverted_index.(SVR), | 65 |
| abstract_inverted_index.(WOA). | 91 |
| abstract_inverted_index.0.991. | 140 |
| abstract_inverted_index.10−2 | 135 |
| abstract_inverted_index.Vector | 63 |
| abstract_inverted_index.inputs | 44 |
| abstract_inverted_index.models | 84, 95 |
| abstract_inverted_index.ranges | 183 |
| abstract_inverted_index.useful | 161 |
| abstract_inverted_index.Support | 62 |
| abstract_inverted_index.WOA-SVR | 119 |
| abstract_inverted_index.achieve | 76 |
| abstract_inverted_index.dataset | 98 |
| abstract_inverted_index.improve | 14 |
| abstract_inverted_index.knowing | 3 |
| abstract_inverted_index.machine | 32, 145 |
| abstract_inverted_index.models, | 47 |
| abstract_inverted_index.models: | 61 |
| abstract_inverted_index.process | 67 |
| abstract_inverted_index.provide | 149 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.several | 112 |
| abstract_inverted_index.suggest | 143 |
| abstract_inverted_index.various | 103 |
| abstract_inverted_index.Bayesian | 71 |
| abstract_inverted_index.Besides, | 168 |
| abstract_inverted_index.Gaussian | 66 |
| abstract_inverted_index.accurate | 150 |
| abstract_inverted_index.achieves | 124 |
| abstract_inverted_index.compared | 107 |
| abstract_inverted_index.critical | 12 |
| abstract_inverted_index.employed | 58 |
| abstract_inverted_index.findings | 142 |
| abstract_inverted_index.hydrogen | 7, 50, 153, 172 |
| abstract_inverted_index.learning | 33, 146 |
| abstract_inverted_index.metrics. | 113 |
| abstract_inverted_index.overall, | 128 |
| abstract_inverted_index.process, | 2 |
| abstract_inverted_index.process. | 18 |
| abstract_inverted_index.R-squared | 138 |
| abstract_inverted_index.algorithm | 90 |
| abstract_inverted_index.different | 60, 156, 182 |
| abstract_inverted_index.estimated | 180 |
| abstract_inverted_index.evaluated | 93 |
| abstract_inverted_index.feedstock | 38 |
| abstract_inverted_index.fractions | 178 |
| abstract_inverted_index.optimized | 85 |
| abstract_inverted_index.pressure, | 36 |
| abstract_inverted_index.pressures | 187 |
| abstract_inverted_index.response. | 55 |
| abstract_inverted_index.°C–350 | 190 |
| abstract_inverted_index.MPa–10.8 | 194 |
| abstract_inverted_index.Regression | 64 |
| abstract_inverted_index.considered | 41 |
| abstract_inverted_index.efficiency | 16 |
| abstract_inverted_index.feedstocks | 30 |
| abstract_inverted_index.regression | 68, 73 |
| abstract_inverted_index.solubility | 5, 23, 51, 100, 154, 170 |
| abstract_inverted_index.techniques | 147 |
| abstract_inverted_index.computation | 24 |
| abstract_inverted_index.development | 164 |
| abstract_inverted_index.feedstocks, | 104, 157 |
| abstract_inverted_index.performance | 109, 127 |
| abstract_inverted_index.predictions | 151 |
| abstract_inverted_index.techniques. | 34 |
| abstract_inverted_index.Temperature, | 35 |
| abstract_inverted_index.hydrocarbons | 10 |
| abstract_inverted_index.investigated | 20 |
| abstract_inverted_index.measurements | 101 |
| abstract_inverted_index.optimization | 89 |
| abstract_inverted_index.performance, | 79 |
| abstract_inverted_index.temperatures | 185 |
| abstract_inverted_index.Specifically, | 56 |
| abstract_inverted_index.hydrogenation | 1 |
| abstract_inverted_index.respectively. | 196 |
| abstract_inverted_index.technologies. | 167 |
| abstract_inverted_index.hydrogen-related | 166 |
| abstract_inverted_index.hyper-parameters | 81 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5061190236, https://openalex.org/A5026936130 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I142608572, https://openalex.org/I47164929 |
| citation_normalized_percentile.value | 0.73565271 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |