Development of Document Clustering Technique for Gurmukhi Script using Fuzzy Term Weight Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.35940/ijrte.b2386.078219
Document clustering is an unsupervised machine learning technique which designates the creation of classes of a certain number of similar objects without prior knowledge of data-sets. These classes of similar objects are known as clusters; each cluster consists unlabeled data objects in such a way that data objects within the same cluster have maximum similarity and have dissimilarity to the data objects of other groups. The purpose of this research work is to develop domain independent Gurmukhi script clustering technique. It is the first ever effort as no prior work has been done to develop domain independent clustering technique for Gurmukhi script. In this paper, a hybrid algorithm for the development of document clustering technique for Gurmukhi script has been developed. The experimental results of proposed document clustering technique reveal that the proposed hybrid technique performs better in terms of defining number of clusters, creation of meaningful cluster titles, and in terms of performance regarding assignment of real time unlabeled data sets to the relevant cluster as a result of various pre-processing steps like segmentation, stemming, normalization as well as extraction of named/noun entities, creation of cluster titles and placing text documents into relevant clusters using fuzzy term weight.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.35940/ijrte.b2386.078219
- https://doi.org/10.35940/ijrte.b2386.078219
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4235084543
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4235084543Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.35940/ijrte.b2386.078219Digital Object Identifier
- Title
-
Development of Document Clustering Technique for Gurmukhi Script using Fuzzy Term WeightWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-07-30Full publication date if available
- Authors
-
Mukesh Kumar, Amandeep VermaList of authors in order
- Landing page
-
https://doi.org/10.35940/ijrte.b2386.078219Publisher landing page
- PDF URL
-
https://doi.org/10.35940/ijrte.b2386.078219Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.35940/ijrte.b2386.078219Direct OA link when available
- Concepts
-
Cluster analysis, Computer science, Artificial intelligence, Fuzzy clustering, Document clustering, Normalization (sociology), Data mining, Pattern recognition (psychology), Information retrieval, Natural language processing, Anthropology, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4235084543 |
|---|---|
| doi | https://doi.org/10.35940/ijrte.b2386.078219 |
| ids.doi | https://doi.org/10.35940/ijrte.b2386.078219 |
| ids.openalex | https://openalex.org/W4235084543 |
| fwci | 0.0 |
| type | article |
| title | Development of Document Clustering Technique for Gurmukhi Script using Fuzzy Term Weight |
| biblio.issue | 2 |
| biblio.volume | 8 |
| biblio.last_page | 1653 |
| biblio.first_page | 1646 |
| topics[0].id | https://openalex.org/T13535 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8745999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Wireless Sensor Networks and IoT |
| topics[1].id | https://openalex.org/T11550 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8568000197410583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8126322031021118 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7832915782928467 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6280077695846558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C17212007 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5673245191574097 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5511111 |
| concepts[3].display_name | Fuzzy clustering |
| concepts[4].id | https://openalex.org/C177937566 |
| concepts[4].level | 3 |
| concepts[4].score | 0.48033586144447327 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4223102 |
| concepts[4].display_name | Document clustering |
| concepts[5].id | https://openalex.org/C136886441 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4629327654838562 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[5].display_name | Normalization (sociology) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4257773160934448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42300593852996826 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C23123220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3541736602783203 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[8].display_name | Information retrieval |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3378404974937439 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C19165224 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[10].display_name | Anthropology |
| concepts[11].id | https://openalex.org/C144024400 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[11].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.8126322031021118 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7832915782928467 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6280077695846558 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/fuzzy-clustering |
| keywords[3].score | 0.5673245191574097 |
| keywords[3].display_name | Fuzzy clustering |
| keywords[4].id | https://openalex.org/keywords/document-clustering |
| keywords[4].score | 0.48033586144447327 |
| keywords[4].display_name | Document clustering |
| keywords[5].id | https://openalex.org/keywords/normalization |
| keywords[5].score | 0.4629327654838562 |
| keywords[5].display_name | Normalization (sociology) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4257773160934448 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.42300593852996826 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/information-retrieval |
| keywords[8].score | 0.3541736602783203 |
| keywords[8].display_name | Information retrieval |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.3378404974937439 |
| keywords[9].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.35940/ijrte.b2386.078219 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210169567 |
| locations[0].source.issn | 2277-3878 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2277-3878 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.35940/ijrte.b2386.078219 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| locations[0].landing_page_url | http://doi.org/10.35940/ijrte.b2386.078219 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101601265 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-8673-1550 |
| authorships[0].author.display_name | Mukesh Kumar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mukesh Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053539653 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3647-0341 |
| authorships[1].author.display_name | Amandeep Verma |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Amandeep Verma |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.35940/ijrte.b2386.078219 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-12T00:00:00 |
| display_name | Development of Document Clustering Technique for Gurmukhi Script using Fuzzy Term Weight |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13535 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8745999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Wireless Sensor Networks and IoT |
| related_works | https://openalex.org/W2019737068, https://openalex.org/W2899601636, https://openalex.org/W2945382830, https://openalex.org/W4224807364, https://openalex.org/W2596632494, https://openalex.org/W2535986621, https://openalex.org/W3015674157, https://openalex.org/W1980197432, https://openalex.org/W2382432689, https://openalex.org/W2000612978 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.35940/ijrte.b2386.078219 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210169567 |
| best_oa_location.source.issn | 2277-3878 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2277-3878 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.35940/ijrte.b2386.078219 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| best_oa_location.landing_page_url | http://doi.org/10.35940/ijrte.b2386.078219 |
| primary_location.id | doi:10.35940/ijrte.b2386.078219 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210169567 |
| primary_location.source.issn | 2277-3878 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2277-3878 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Recent Technology and Engineering (IJRTE) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.35940/ijrte.b2386.078219 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Recent Technology and Engineering (IJRTE) |
| primary_location.landing_page_url | http://doi.org/10.35940/ijrte.b2386.078219 |
| publication_date | 2019-07-30 |
| publication_year | 2019 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 43, 105, 167 |
| abstract_inverted_index.In | 102 |
| abstract_inverted_index.It | 80 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 33, 86, 166, 177, 179 |
| abstract_inverted_index.in | 41, 137, 150 |
| abstract_inverted_index.is | 2, 71, 81 |
| abstract_inverted_index.no | 87 |
| abstract_inverted_index.of | 12, 14, 18, 24, 28, 62, 67, 111, 124, 139, 142, 145, 152, 156, 169, 181, 185 |
| abstract_inverted_index.to | 58, 72, 93, 162 |
| abstract_inverted_index.The | 65, 121 |
| abstract_inverted_index.and | 55, 149, 188 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.for | 99, 108, 115 |
| abstract_inverted_index.has | 90, 118 |
| abstract_inverted_index.the | 10, 49, 59, 82, 109, 131, 163 |
| abstract_inverted_index.way | 44 |
| abstract_inverted_index.been | 91, 119 |
| abstract_inverted_index.data | 39, 46, 60, 160 |
| abstract_inverted_index.done | 92 |
| abstract_inverted_index.each | 35 |
| abstract_inverted_index.ever | 84 |
| abstract_inverted_index.have | 52, 56 |
| abstract_inverted_index.into | 192 |
| abstract_inverted_index.like | 173 |
| abstract_inverted_index.real | 157 |
| abstract_inverted_index.same | 50 |
| abstract_inverted_index.sets | 161 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.term | 197 |
| abstract_inverted_index.text | 190 |
| abstract_inverted_index.that | 45, 130 |
| abstract_inverted_index.this | 68, 103 |
| abstract_inverted_index.time | 158 |
| abstract_inverted_index.well | 178 |
| abstract_inverted_index.work | 70, 89 |
| abstract_inverted_index.These | 26 |
| abstract_inverted_index.first | 83 |
| abstract_inverted_index.fuzzy | 196 |
| abstract_inverted_index.known | 32 |
| abstract_inverted_index.other | 63 |
| abstract_inverted_index.prior | 22, 88 |
| abstract_inverted_index.steps | 172 |
| abstract_inverted_index.terms | 138, 151 |
| abstract_inverted_index.using | 195 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.better | 136 |
| abstract_inverted_index.domain | 74, 95 |
| abstract_inverted_index.effort | 85 |
| abstract_inverted_index.hybrid | 106, 133 |
| abstract_inverted_index.number | 17, 141 |
| abstract_inverted_index.paper, | 104 |
| abstract_inverted_index.result | 168 |
| abstract_inverted_index.reveal | 129 |
| abstract_inverted_index.script | 77, 117 |
| abstract_inverted_index.titles | 187 |
| abstract_inverted_index.within | 48 |
| abstract_inverted_index.certain | 16 |
| abstract_inverted_index.classes | 13, 27 |
| abstract_inverted_index.cluster | 36, 51, 147, 165, 186 |
| abstract_inverted_index.develop | 73, 94 |
| abstract_inverted_index.groups. | 64 |
| abstract_inverted_index.machine | 5 |
| abstract_inverted_index.maximum | 53 |
| abstract_inverted_index.objects | 20, 30, 40, 47, 61 |
| abstract_inverted_index.placing | 189 |
| abstract_inverted_index.purpose | 66 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.script. | 101 |
| abstract_inverted_index.similar | 19, 29 |
| abstract_inverted_index.titles, | 148 |
| abstract_inverted_index.various | 170 |
| abstract_inverted_index.weight. | 198 |
| abstract_inverted_index.without | 21 |
| abstract_inverted_index.Document | 0 |
| abstract_inverted_index.Gurmukhi | 76, 100, 116 |
| abstract_inverted_index.clusters | 194 |
| abstract_inverted_index.consists | 37 |
| abstract_inverted_index.creation | 11, 144, 184 |
| abstract_inverted_index.defining | 140 |
| abstract_inverted_index.document | 112, 126 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.performs | 135 |
| abstract_inverted_index.proposed | 125, 132 |
| abstract_inverted_index.relevant | 164, 193 |
| abstract_inverted_index.research | 69 |
| abstract_inverted_index.algorithm | 107 |
| abstract_inverted_index.clusters, | 143 |
| abstract_inverted_index.clusters; | 34 |
| abstract_inverted_index.documents | 191 |
| abstract_inverted_index.entities, | 183 |
| abstract_inverted_index.knowledge | 23 |
| abstract_inverted_index.regarding | 154 |
| abstract_inverted_index.stemming, | 175 |
| abstract_inverted_index.technique | 7, 98, 114, 128, 134 |
| abstract_inverted_index.unlabeled | 38, 159 |
| abstract_inverted_index.assignment | 155 |
| abstract_inverted_index.clustering | 1, 78, 97, 113, 127 |
| abstract_inverted_index.data-sets. | 25 |
| abstract_inverted_index.designates | 9 |
| abstract_inverted_index.developed. | 120 |
| abstract_inverted_index.extraction | 180 |
| abstract_inverted_index.meaningful | 146 |
| abstract_inverted_index.named/noun | 182 |
| abstract_inverted_index.similarity | 54 |
| abstract_inverted_index.technique. | 79 |
| abstract_inverted_index.development | 110 |
| abstract_inverted_index.independent | 75, 96 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.experimental | 122 |
| abstract_inverted_index.unsupervised | 4 |
| abstract_inverted_index.dissimilarity | 57 |
| abstract_inverted_index.normalization | 176 |
| abstract_inverted_index.segmentation, | 174 |
| abstract_inverted_index.pre-processing | 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.31764475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |