Development of machine learning models utilizing proton energy spectrum and dose to for post-treatment T2 hyperintensity prediction Article Swipe
Mark Newpower
,
Joseph M. DeCunha
,
Özer Algan
,
Erik Tranéus
,
Salahuddin Ahmad
,
Radhe Mohan
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijpt.2024.100689
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijpt.2024.100689
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ijpt.2024.100689
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408481653
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408481653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ijpt.2024.100689Digital Object Identifier
- Title
-
Development of machine learning models utilizing proton energy spectrum and dose to for post-treatment T2 hyperintensity predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Mark Newpower, Joseph M. DeCunha, Özer Algan, Erik Tranéus, Salahuddin Ahmad, Radhe MohanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ijpt.2024.100689Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ijpt.2024.100689Direct OA link when available
- Concepts
-
Proton, Energy (signal processing), Computer science, Energy spectrum, Proton therapy, Artificial intelligence, Spectrum (functional analysis), Machine learning, Mathematics, Physics, Statistics, Nuclear physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408481653 |
|---|---|
| doi | https://doi.org/10.1016/j.ijpt.2024.100689 |
| ids.doi | https://doi.org/10.1016/j.ijpt.2024.100689 |
| ids.openalex | https://openalex.org/W4408481653 |
| fwci | 0.0 |
| type | article |
| title | Development of machine learning models utilizing proton energy spectrum and dose to for post-treatment T2 hyperintensity prediction |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 100689 |
| biblio.first_page | 100689 |
| topics[0].id | https://openalex.org/T11176 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9545999765396118 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Radiation Therapy and Dosimetry |
| topics[1].id | https://openalex.org/T10378 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9502000212669373 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced MRI Techniques and Applications |
| topics[2].id | https://openalex.org/T10358 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9433000087738037 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Advanced Radiotherapy Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C54516573 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5209985375404358 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2294 |
| concepts[0].display_name | Proton |
| concepts[1].id | https://openalex.org/C186370098 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5176056623458862 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[1].display_name | Energy (signal processing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5141244530677795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2983197053 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4529874920845032 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q654182 |
| concepts[3].display_name | Energy spectrum |
| concepts[4].id | https://openalex.org/C2779244869 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4487890899181366 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q507667 |
| concepts[4].display_name | Proton therapy |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4281327724456787 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C156778621 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4267788231372833 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1365748 |
| concepts[6].display_name | Spectrum (functional analysis) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38361111283302307 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19101199507713318 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.18601319193840027 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14518952369689941 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C185544564 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10263589024543762 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[11].display_name | Nuclear physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/proton |
| keywords[0].score | 0.5209985375404358 |
| keywords[0].display_name | Proton |
| keywords[1].id | https://openalex.org/keywords/energy |
| keywords[1].score | 0.5176056623458862 |
| keywords[1].display_name | Energy (signal processing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5141244530677795 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/energy-spectrum |
| keywords[3].score | 0.4529874920845032 |
| keywords[3].display_name | Energy spectrum |
| keywords[4].id | https://openalex.org/keywords/proton-therapy |
| keywords[4].score | 0.4487890899181366 |
| keywords[4].display_name | Proton therapy |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4281327724456787 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/spectrum |
| keywords[6].score | 0.4267788231372833 |
| keywords[6].display_name | Spectrum (functional analysis) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.38361111283302307 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.19101199507713318 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.18601319193840027 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.14518952369689941 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/nuclear-physics |
| keywords[11].score | 0.10263589024543762 |
| keywords[11].display_name | Nuclear physics |
| language | en |
| locations[0].id | doi:10.1016/j.ijpt.2024.100689 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219142 |
| locations[0].source.issn | 2331-5180 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2331-5180 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Particle Therapy |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Particle Therapy |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ijpt.2024.100689 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5031695487 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1156-0452 |
| authorships[0].author.display_name | Mark Newpower |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mark Newpower |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006958327 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2098-4222 |
| authorships[1].author.display_name | Joseph M. DeCunha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joe DeCunha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025967381 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Özer Algan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ozer Algan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069521020 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1850-7382 |
| authorships[3].author.display_name | Erik Tranéus |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Erik Traneus |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5061420006 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6376-6295 |
| authorships[4].author.display_name | Salahuddin Ahmad |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Salahuddin Ahmad |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041943880 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3746-4557 |
| authorships[5].author.display_name | Radhe Mohan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Radhe Mohan |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ijpt.2024.100689 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of machine learning models utilizing proton energy spectrum and dose to for post-treatment T2 hyperintensity prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11176 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9545999765396118 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Radiation Therapy and Dosimetry |
| related_works | https://openalex.org/W3025724153, https://openalex.org/W2901288344, https://openalex.org/W3011224823, https://openalex.org/W3094982803, https://openalex.org/W4287625799, https://openalex.org/W2348939453, https://openalex.org/W2952745759, https://openalex.org/W35135325, https://openalex.org/W2136180769, https://openalex.org/W2207494488 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ijpt.2024.100689 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219142 |
| best_oa_location.source.issn | 2331-5180 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2331-5180 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Particle Therapy |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Particle Therapy |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ijpt.2024.100689 |
| primary_location.id | doi:10.1016/j.ijpt.2024.100689 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219142 |
| primary_location.source.issn | 2331-5180 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2331-5180 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Particle Therapy |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Particle Therapy |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ijpt.2024.100689 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.11346786 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |