Development Of Noise Induced Hearing Loss Prediction Model Using Levenberg Marquardt Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24191/jeesr.v22i1.002
This research explores the creation of a noiseinduced hearing loss (NIHL) prediction model.In the context of occupational health, NIHL is defined as hearing loss that occurs as a result of overexposure to noise hazards at work for a given noise level and time.Despite the high statistical instances that have been recorded over the course of a number of years, there have been very few, if any, efforts made to construct an appropriate prediction model using the combination of linked diagnostic occupational hazards.This study aims to show how an Artificial Neural Network Levenberg-Marquardt algorithm can be used to make a prediction model for NIHL.The goal is to find highly linked risk factors that increase the number of NIHL cases reported in Selangor, Malaysia.The study looked at 355 secondary data points taken from NIHL confirmed cases and given by the Department of Occupational Safety and Health (DOSH).The overall performance of the ANN prediction model was tested at a level of 90.46 percent average.Because of the great accuracy in predicting NIHL, it is inferred that the model may be employed as an intelligent system in the preliminary screening phase.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.24191/jeesr.v22i1.002
- https://doi.org/10.24191/jeesr.v22i1.002
- OA Status
- diamond
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367693036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367693036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24191/jeesr.v22i1.002Digital Object Identifier
- Title
-
Development Of Noise Induced Hearing Loss Prediction Model Using Levenberg MarquardtWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-01Full publication date if available
- Authors
-
Siti Fairus Mohd Zain, Ahmad Asari Sulaiman, Azri A. Aziz, Siti Munira Yasin, Mohammad Idris Zamhuri, Ahmad Fitri Abdullah Hair, Mohamad Fahmi Hussin, Ismaniza IsmailList of authors in order
- Landing page
-
https://doi.org/10.24191/jeesr.v22i1.002Publisher landing page
- PDF URL
-
https://doi.org/10.24191/jeesr.v22i1.002Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.24191/jeesr.v22i1.002Direct OA link when available
- Concepts
-
Levenberg–Marquardt algorithm, Noise-induced hearing loss, Hearing loss, Noise (video), Computer science, Audiology, Noise exposure, Medicine, Artificial intelligence, Artificial neural network, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367693036 |
|---|---|
| doi | https://doi.org/10.24191/jeesr.v22i1.002 |
| ids.doi | https://doi.org/10.24191/jeesr.v22i1.002 |
| ids.openalex | https://openalex.org/W4367693036 |
| fwci | 0.0 |
| type | article |
| title | Development Of Noise Induced Hearing Loss Prediction Model Using Levenberg Marquardt |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 18 |
| biblio.first_page | 11 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87578567 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9252721667289734 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1426494 |
| concepts[0].display_name | Levenberg–Marquardt algorithm |
| concepts[1].id | https://openalex.org/C2779356876 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6118667721748352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1475712 |
| concepts[1].display_name | Noise-induced hearing loss |
| concepts[2].id | https://openalex.org/C2780493683 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4843102991580963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q16035842 |
| concepts[2].display_name | Hearing loss |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.45058247447013855 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43195879459381104 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C548259974 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41190028190612793 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q569965 |
| concepts[5].display_name | Audiology |
| concepts[6].id | https://openalex.org/C3018332767 |
| concepts[6].level | 3 |
| concepts[6].score | 0.2964435815811157 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4117845 |
| concepts[6].display_name | Noise exposure |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22967863082885742 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22077873349189758 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.1677754521369934 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/levenberg–marquardt-algorithm |
| keywords[0].score | 0.9252721667289734 |
| keywords[0].display_name | Levenberg–Marquardt algorithm |
| keywords[1].id | https://openalex.org/keywords/noise-induced-hearing-loss |
| keywords[1].score | 0.6118667721748352 |
| keywords[1].display_name | Noise-induced hearing loss |
| keywords[2].id | https://openalex.org/keywords/hearing-loss |
| keywords[2].score | 0.4843102991580963 |
| keywords[2].display_name | Hearing loss |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.45058247447013855 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43195879459381104 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/audiology |
| keywords[5].score | 0.41190028190612793 |
| keywords[5].display_name | Audiology |
| keywords[6].id | https://openalex.org/keywords/noise-exposure |
| keywords[6].score | 0.2964435815811157 |
| keywords[6].display_name | Noise exposure |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.22967863082885742 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.22077873349189758 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.1677754521369934 |
| keywords[9].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.24191/jeesr.v22i1.002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210188999 |
| locations[0].source.issn | 1985-5389 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1985-5389 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Electrical & Electronic Systems Research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.24191/jeesr.v22i1.002 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Electrical & Electronic Systems Research |
| locations[0].landing_page_url | http://doi.org/10.24191/jeesr.v22i1.002 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5033561320 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Siti Fairus Mohd Zain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Siti Fairus Mohd Zain |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103716713 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ahmad Asari Sulaiman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ahmad Asari Sulaiman |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5053206303 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Azri A. Aziz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Azri Aziz |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045667298 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9072-5053 |
| authorships[3].author.display_name | Siti Munira Yasin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Siti Munira Yasin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067782922 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mohammad Idris Zamhuri |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mohammad Idris Zamhuri |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5081524653 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ahmad Fitri Abdullah Hair |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ahmad Fitri Abdullah Hair |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5052771970 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4993-9441 |
| authorships[6].author.display_name | Mohamad Fahmi Hussin |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mohamad Fahmi Hussin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5020970037 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6895-4327 |
| authorships[7].author.display_name | Ismaniza Ismail |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ismaniza Ismail |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.24191/jeesr.v22i1.002 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development Of Noise Induced Hearing Loss Prediction Model Using Levenberg Marquardt |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| related_works | https://openalex.org/W3149292342, https://openalex.org/W2028851906, https://openalex.org/W2427888203, https://openalex.org/W3028717094, https://openalex.org/W2355641691, https://openalex.org/W95658486, https://openalex.org/W4249119805, https://openalex.org/W2022291867, https://openalex.org/W1990658201, https://openalex.org/W2408272939 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24191/jeesr.v22i1.002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210188999 |
| best_oa_location.source.issn | 1985-5389 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1985-5389 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Electrical & Electronic Systems Research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.24191/jeesr.v22i1.002 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Electrical & Electronic Systems Research |
| best_oa_location.landing_page_url | http://doi.org/10.24191/jeesr.v22i1.002 |
| primary_location.id | doi:10.24191/jeesr.v22i1.002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210188999 |
| primary_location.source.issn | 1985-5389 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1985-5389 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Electrical & Electronic Systems Research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.24191/jeesr.v22i1.002 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Electrical & Electronic Systems Research |
| primary_location.landing_page_url | http://doi.org/10.24191/jeesr.v22i1.002 |
| publication_date | 2023-04-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3126373487, https://openalex.org/W2298125227, https://openalex.org/W2065773333, https://openalex.org/W2007285382, https://openalex.org/W2152983690, https://openalex.org/W2160506349, https://openalex.org/W2518955454, https://openalex.org/W2341902646, https://openalex.org/W2126682091, https://openalex.org/W2905423127, https://openalex.org/W2513060759, https://openalex.org/W4254543475, https://openalex.org/W2034979391, https://openalex.org/W2079129057, https://openalex.org/W3125520533, https://openalex.org/W2411786938, https://openalex.org/W101632335, https://openalex.org/W2079929764, https://openalex.org/W2155837945, https://openalex.org/W2161821576, https://openalex.org/W2233884136, https://openalex.org/W2077996080, https://openalex.org/W1505073742, https://openalex.org/W2513094496, https://openalex.org/W2086958585, https://openalex.org/W2997616550, https://openalex.org/W2013714344, https://openalex.org/W4289784318, https://openalex.org/W2709177359, https://openalex.org/W2496418580 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 6, 27, 37, 55, 98, 155 |
| abstract_inverted_index.an | 70, 87, 178 |
| abstract_inverted_index.as | 21, 26, 177 |
| abstract_inverted_index.at | 34, 124, 154 |
| abstract_inverted_index.be | 94, 175 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.if | 64 |
| abstract_inverted_index.in | 119, 165, 181 |
| abstract_inverted_index.is | 19, 104, 169 |
| abstract_inverted_index.it | 168 |
| abstract_inverted_index.of | 5, 15, 29, 54, 57, 77, 115, 139, 147, 157, 161 |
| abstract_inverted_index.to | 31, 68, 84, 96, 105 |
| abstract_inverted_index.355 | 125 |
| abstract_inverted_index.ANN | 149 |
| abstract_inverted_index.and | 41, 134, 142 |
| abstract_inverted_index.can | 93 |
| abstract_inverted_index.for | 36, 101 |
| abstract_inverted_index.how | 86 |
| abstract_inverted_index.may | 174 |
| abstract_inverted_index.the | 3, 13, 43, 52, 75, 113, 137, 148, 162, 172, 182 |
| abstract_inverted_index.was | 152 |
| abstract_inverted_index.NIHL | 18, 116, 131 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.aims | 83 |
| abstract_inverted_index.any, | 65 |
| abstract_inverted_index.been | 49, 61 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.few, | 63 |
| abstract_inverted_index.find | 106 |
| abstract_inverted_index.from | 130 |
| abstract_inverted_index.goal | 103 |
| abstract_inverted_index.have | 48, 60 |
| abstract_inverted_index.high | 44 |
| abstract_inverted_index.loss | 9, 23 |
| abstract_inverted_index.made | 67 |
| abstract_inverted_index.make | 97 |
| abstract_inverted_index.over | 51 |
| abstract_inverted_index.risk | 109 |
| abstract_inverted_index.show | 85 |
| abstract_inverted_index.that | 24, 47, 111, 171 |
| abstract_inverted_index.used | 95 |
| abstract_inverted_index.very | 62 |
| abstract_inverted_index.work | 35 |
| abstract_inverted_index.90.46 | 158 |
| abstract_inverted_index.NIHL, | 167 |
| abstract_inverted_index.cases | 117, 133 |
| abstract_inverted_index.given | 38, 135 |
| abstract_inverted_index.great | 163 |
| abstract_inverted_index.level | 40, 156 |
| abstract_inverted_index.model | 73, 100, 151, 173 |
| abstract_inverted_index.noise | 32, 39 |
| abstract_inverted_index.study | 82, 122 |
| abstract_inverted_index.taken | 129 |
| abstract_inverted_index.there | 59 |
| abstract_inverted_index.using | 74 |
| abstract_inverted_index.(NIHL) | 10 |
| abstract_inverted_index.Health | 143 |
| abstract_inverted_index.Neural | 89 |
| abstract_inverted_index.Safety | 141 |
| abstract_inverted_index.course | 53 |
| abstract_inverted_index.highly | 107 |
| abstract_inverted_index.linked | 78, 108 |
| abstract_inverted_index.looked | 123 |
| abstract_inverted_index.number | 56, 114 |
| abstract_inverted_index.occurs | 25 |
| abstract_inverted_index.phase. | 185 |
| abstract_inverted_index.points | 128 |
| abstract_inverted_index.result | 28 |
| abstract_inverted_index.system | 180 |
| abstract_inverted_index.tested | 153 |
| abstract_inverted_index.years, | 58 |
| abstract_inverted_index.Network | 90 |
| abstract_inverted_index.context | 14 |
| abstract_inverted_index.defined | 20 |
| abstract_inverted_index.efforts | 66 |
| abstract_inverted_index.factors | 110 |
| abstract_inverted_index.hazards | 33 |
| abstract_inverted_index.health, | 17 |
| abstract_inverted_index.hearing | 8, 22 |
| abstract_inverted_index.overall | 145 |
| abstract_inverted_index.percent | 159 |
| abstract_inverted_index.NIHL.The | 102 |
| abstract_inverted_index.accuracy | 164 |
| abstract_inverted_index.creation | 4 |
| abstract_inverted_index.employed | 176 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.increase | 112 |
| abstract_inverted_index.inferred | 170 |
| abstract_inverted_index.model.In | 12 |
| abstract_inverted_index.recorded | 50 |
| abstract_inverted_index.reported | 118 |
| abstract_inverted_index.research | 1 |
| abstract_inverted_index.Selangor, | 120 |
| abstract_inverted_index.algorithm | 92 |
| abstract_inverted_index.confirmed | 132 |
| abstract_inverted_index.construct | 69 |
| abstract_inverted_index.instances | 46 |
| abstract_inverted_index.screening | 184 |
| abstract_inverted_index.secondary | 126 |
| abstract_inverted_index.(DOSH).The | 144 |
| abstract_inverted_index.Artificial | 88 |
| abstract_inverted_index.Department | 138 |
| abstract_inverted_index.diagnostic | 79 |
| abstract_inverted_index.predicting | 166 |
| abstract_inverted_index.prediction | 11, 72, 99, 150 |
| abstract_inverted_index.appropriate | 71 |
| abstract_inverted_index.combination | 76 |
| abstract_inverted_index.intelligent | 179 |
| abstract_inverted_index.performance | 146 |
| abstract_inverted_index.preliminary | 183 |
| abstract_inverted_index.statistical | 45 |
| abstract_inverted_index.Malaysia.The | 121 |
| abstract_inverted_index.Occupational | 140 |
| abstract_inverted_index.hazards.This | 81 |
| abstract_inverted_index.noiseinduced | 7 |
| abstract_inverted_index.occupational | 16, 80 |
| abstract_inverted_index.overexposure | 30 |
| abstract_inverted_index.time.Despite | 42 |
| abstract_inverted_index.average.Because | 160 |
| abstract_inverted_index.Levenberg-Marquardt | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |