Development of Robust Machine Learning Models for Tool-Wear Monitoring in Blanking Processes Under Data Scarcity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app151910323
Tool wear is a major challenge in sheet-metal forming, as it directly affects product quality and process stability. Reliable monitoring of tool-wear conditions is therefore essential, yet it remains challenging due to limited data availability and uncertainties in manufacturing conditions. To this end, this study evaluates different strategies for developing robust machine learning models under data scarcity for fluctuating manufacturing conditions: a 1D-CNN using time-series data (baseline model), a 1D-CNN with signal fusion of force and acceleration signals, and a 2D-CNN based on Gramian Angular Field (GAF) transformation. Experiments are conducted using inline data from a blanking process with varying material thicknesses and varying availability of training data. The results show that the fusion model achieved the highest improvement (up to 93.2% with the least training data) compared to the baseline model (78.3%). While the average accuracy of the 2D-CNN was comparable to that of the baseline model, its performance was more consistent, with a reduced standard deviation of 5.4% compared to 9.2%. The findings underscore the benefits of sensor fusion and structured signal representation in enhancing classification robustness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app151910323
- https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392
- OA Status
- gold
- References
- 18
- OpenAlex ID
- https://openalex.org/W4414426123
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414426123Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app151910323Digital Object Identifier
- Title
-
Development of Robust Machine Learning Models for Tool-Wear Monitoring in Blanking Processes Under Data ScarcityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-23Full publication date if available
- Authors
-
Johannes Hofmann, Ciarán-Victor Veitenheimer, Changshun Fei, Chengting Chen, Haoyu Wang, Lei Zhao, Peter GrocheList of authors in order
- Landing page
-
https://doi.org/10.3390/app151910323Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414426123 |
|---|---|
| doi | https://doi.org/10.3390/app151910323 |
| ids.doi | https://doi.org/10.3390/app151910323 |
| ids.openalex | https://openalex.org/W4414426123 |
| fwci | 0.0 |
| type | article |
| title | Development of Robust Machine Learning Models for Tool-Wear Monitoring in Blanking Processes Under Data Scarcity |
| biblio.issue | 19 |
| biblio.volume | 15 |
| biblio.last_page | 10323 |
| biblio.first_page | 10323 |
| topics[0].id | https://openalex.org/T10188 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9972000122070312 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Advanced machining processes and optimization |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T10834 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Welding Techniques and Residual Stresses |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| language | en |
| locations[0].id | doi:10.3390/app151910323 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app151910323 |
| locations[1].id | pmh:oai:doaj.org/article:7e4663df46a94d598fd0179af1d8eeaf |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 19, p 10323 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/7e4663df46a94d598fd0179af1d8eeaf |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103972645 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-2066-6081 |
| authorships[0].author.display_name | Johannes Hofmann |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I31512782 |
| authorships[0].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Technical University of Darmstadt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Johannes Hofmann |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[1].author.id | https://openalex.org/A5007784285 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-3298-781X |
| authorships[1].author.display_name | Ciarán-Victor Veitenheimer |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I31512782 |
| authorships[1].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Darmstadt |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ciarán-Victor Veitenheimer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[2].author.id | https://openalex.org/A5112933074 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Changshun Fei |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I31512782 |
| authorships[2].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technical University of Darmstadt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenkai Fei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[3].author.id | https://openalex.org/A5119702023 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chengting Chen |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I31512782 |
| authorships[3].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Technical University of Darmstadt |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chengting Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[4].author.id | https://openalex.org/A5115695530 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1100-8633 |
| authorships[4].author.display_name | Haoyu Wang |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I31512782 |
| authorships[4].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Technical University of Darmstadt |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haoyu Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[5].author.id | https://openalex.org/A5102824857 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0619-6038 |
| authorships[5].author.display_name | Lei Zhao |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I31512782 |
| authorships[5].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Technical University of Darmstadt |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lianhao Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[6].author.id | https://openalex.org/A5022842777 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7927-9523 |
| authorships[6].author.display_name | Peter Groche |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I31512782 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I31512782 |
| authorships[6].institutions[0].ror | https://ror.org/05n911h24 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I31512782 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Technical University of Darmstadt |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Peter Groche |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute for Production Engineering and Forming Machines, Technical University of Darmstadt, Otto-Berndt-Straße 2, 64287 Darmstadt, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of Robust Machine Learning Models for Tool-Wear Monitoring in Blanking Processes Under Data Scarcity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10188 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9972000122070312 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Advanced machining processes and optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app151910323 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app151910323 |
| primary_location.id | doi:10.3390/app151910323 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/15/19/10323/pdf?version=1758628392 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app151910323 |
| publication_date | 2025-09-23 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2901705370, https://openalex.org/W2027461913, https://openalex.org/W4387103552, https://openalex.org/W4281691922, https://openalex.org/W3172636945, https://openalex.org/W2094777608, https://openalex.org/W2929137706, https://openalex.org/W4297399280, https://openalex.org/W2115827012, https://openalex.org/W4225996403, https://openalex.org/W4375858304, https://openalex.org/W2962414238, https://openalex.org/W3186351866, https://openalex.org/W4221062299, https://openalex.org/W2469788682, https://openalex.org/W4367155405, https://openalex.org/W4402722211, https://openalex.org/W2953130411 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 3, 61, 68, 79, 95, 154 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.in | 6, 37, 175 |
| abstract_inverted_index.is | 2, 23 |
| abstract_inverted_index.it | 10, 27 |
| abstract_inverted_index.of | 20, 73, 105, 137, 144, 158, 168 |
| abstract_inverted_index.on | 82 |
| abstract_inverted_index.to | 31, 120, 128, 142, 161 |
| abstract_inverted_index.(up | 119 |
| abstract_inverted_index.The | 108, 163 |
| abstract_inverted_index.and | 15, 35, 75, 78, 102, 171 |
| abstract_inverted_index.are | 89 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 48, 57 |
| abstract_inverted_index.its | 148 |
| abstract_inverted_index.the | 112, 116, 123, 129, 134, 138, 145, 166 |
| abstract_inverted_index.was | 140, 150 |
| abstract_inverted_index.yet | 26 |
| abstract_inverted_index.5.4% | 159 |
| abstract_inverted_index.Tool | 0 |
| abstract_inverted_index.data | 33, 55, 65, 93 |
| abstract_inverted_index.end, | 42 |
| abstract_inverted_index.from | 94 |
| abstract_inverted_index.more | 151 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.that | 111, 143 |
| abstract_inverted_index.this | 41, 43 |
| abstract_inverted_index.wear | 1 |
| abstract_inverted_index.with | 70, 98, 122, 153 |
| abstract_inverted_index.(GAF) | 86 |
| abstract_inverted_index.9.2%. | 162 |
| abstract_inverted_index.93.2% | 121 |
| abstract_inverted_index.Field | 85 |
| abstract_inverted_index.While | 133 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.data) | 126 |
| abstract_inverted_index.data. | 107 |
| abstract_inverted_index.force | 74 |
| abstract_inverted_index.least | 124 |
| abstract_inverted_index.major | 4 |
| abstract_inverted_index.model | 114, 131 |
| abstract_inverted_index.study | 44 |
| abstract_inverted_index.under | 54 |
| abstract_inverted_index.using | 63, 91 |
| abstract_inverted_index.1D-CNN | 62, 69 |
| abstract_inverted_index.2D-CNN | 80, 139 |
| abstract_inverted_index.fusion | 72, 113, 170 |
| abstract_inverted_index.inline | 92 |
| abstract_inverted_index.model, | 147 |
| abstract_inverted_index.models | 53 |
| abstract_inverted_index.robust | 50 |
| abstract_inverted_index.sensor | 169 |
| abstract_inverted_index.signal | 71, 173 |
| abstract_inverted_index.Angular | 84 |
| abstract_inverted_index.Gramian | 83 |
| abstract_inverted_index.affects | 12 |
| abstract_inverted_index.average | 135 |
| abstract_inverted_index.highest | 117 |
| abstract_inverted_index.limited | 32 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.model), | 67 |
| abstract_inverted_index.process | 16, 97 |
| abstract_inverted_index.product | 13 |
| abstract_inverted_index.quality | 14 |
| abstract_inverted_index.reduced | 155 |
| abstract_inverted_index.remains | 28 |
| abstract_inverted_index.results | 109 |
| abstract_inverted_index.varying | 99, 103 |
| abstract_inverted_index.(78.3%). | 132 |
| abstract_inverted_index.Reliable | 18 |
| abstract_inverted_index.accuracy | 136 |
| abstract_inverted_index.achieved | 115 |
| abstract_inverted_index.baseline | 130, 146 |
| abstract_inverted_index.benefits | 167 |
| abstract_inverted_index.blanking | 96 |
| abstract_inverted_index.compared | 127, 160 |
| abstract_inverted_index.directly | 11 |
| abstract_inverted_index.findings | 164 |
| abstract_inverted_index.forming, | 8 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.material | 100 |
| abstract_inverted_index.scarcity | 56 |
| abstract_inverted_index.signals, | 77 |
| abstract_inverted_index.standard | 156 |
| abstract_inverted_index.training | 106, 125 |
| abstract_inverted_index.(baseline | 66 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.conducted | 90 |
| abstract_inverted_index.deviation | 157 |
| abstract_inverted_index.different | 46 |
| abstract_inverted_index.enhancing | 176 |
| abstract_inverted_index.evaluates | 45 |
| abstract_inverted_index.therefore | 24 |
| abstract_inverted_index.tool-wear | 21 |
| abstract_inverted_index.comparable | 141 |
| abstract_inverted_index.conditions | 22 |
| abstract_inverted_index.developing | 49 |
| abstract_inverted_index.essential, | 25 |
| abstract_inverted_index.monitoring | 19 |
| abstract_inverted_index.stability. | 17 |
| abstract_inverted_index.strategies | 47 |
| abstract_inverted_index.structured | 172 |
| abstract_inverted_index.underscore | 165 |
| abstract_inverted_index.Experiments | 88 |
| abstract_inverted_index.challenging | 29 |
| abstract_inverted_index.conditions. | 39 |
| abstract_inverted_index.conditions: | 60 |
| abstract_inverted_index.consistent, | 152 |
| abstract_inverted_index.fluctuating | 58 |
| abstract_inverted_index.improvement | 118 |
| abstract_inverted_index.performance | 149 |
| abstract_inverted_index.robustness. | 178 |
| abstract_inverted_index.sheet-metal | 7 |
| abstract_inverted_index.thicknesses | 101 |
| abstract_inverted_index.time-series | 64 |
| abstract_inverted_index.acceleration | 76 |
| abstract_inverted_index.availability | 34, 104 |
| abstract_inverted_index.manufacturing | 38, 59 |
| abstract_inverted_index.uncertainties | 36 |
| abstract_inverted_index.classification | 177 |
| abstract_inverted_index.representation | 174 |
| abstract_inverted_index.transformation. | 87 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5103972645 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I31512782 |
| citation_normalized_percentile.value | 0.49731897 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |