Development of scoring system for risk stratification in clinical medicine: a step-by-step tutorial Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.21037/atm.2017.08.22
Risk scores play an important role in clinical medicine. With advances in information technology and availability of electronic healthcare record, scoring systems of less commonly seen diseases and population can be developed. The aim of the article is to provide a tutorial on how to develop and validate risk scores based on a virtual dataset by using R software. The dataset we generated including numeric and categorical variables and firstly the numeric variables would be converted to factor variables according to cutoff points identified by the LOESS smoother. Then risk points of each variable, which are related to the coefficients in logistic regression, are assigned to each level of the converted factor variables and other categorical variables. Finally, the total score is calculated for each subject to represent the prediction of the outcome event probability. The original dataset is split into training and validation subsets. Discrimination and calibration are evaluated in the validation subset. R codes with explanations are presented in the main text.
Related Topics
- Type
- editorial
- Language
- en
- Landing Page
- https://doi.org/10.21037/atm.2017.08.22
- https://atm.amegroups.com/article/viewFile/16442/16556
- OA Status
- hybrid
- Cited By
- 82
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2755641806
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2755641806Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21037/atm.2017.08.22Digital Object Identifier
- Title
-
Development of scoring system for risk stratification in clinical medicine: a step-by-step tutorialWork title
- Type
-
editorialOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-11-01Full publication date if available
- Authors
-
Zhongheng Zhang, Haoyang Zhang, Mahesh Kumar KhanalList of authors in order
- Landing page
-
https://doi.org/10.21037/atm.2017.08.22Publisher landing page
- PDF URL
-
https://atm.amegroups.com/article/viewFile/16442/16556Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://atm.amegroups.com/article/viewFile/16442/16556Direct OA link when available
- Concepts
-
Categorical variable, Logistic regression, Computer science, Event (particle physics), Variable (mathematics), Data mining, Software, Statistics, Population, Machine learning, Artificial intelligence, Medicine, Mathematics, Physics, Mathematical analysis, Quantum mechanics, Environmental health, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
82Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 6, 2023: 13, 2022: 19, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2755641806 |
|---|---|
| doi | https://doi.org/10.21037/atm.2017.08.22 |
| ids.doi | https://doi.org/10.21037/atm.2017.08.22 |
| ids.mag | 2755641806 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/29201888 |
| ids.openalex | https://openalex.org/W2755641806 |
| fwci | 3.89605384 |
| type | editorial |
| title | Development of scoring system for risk stratification in clinical medicine: a step-by-step tutorial |
| biblio.issue | 21 |
| biblio.volume | 5 |
| biblio.last_page | 436 |
| biblio.first_page | 436 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.968999981880188 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C5274069 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8600277304649353 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[0].display_name | Categorical variable |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6216422915458679 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.585448145866394 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4854336380958557 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C182365436 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4600970149040222 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[4].display_name | Variable (mathematics) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4291403591632843 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C2777904410 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4246983528137207 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[6].display_name | Software |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4144299030303955 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C2908647359 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41239702701568604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[8].display_name | Population |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34458255767822266 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32425087690353394 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.29231902956962585 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.22494390606880188 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C99454951 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[16].display_name | Environmental health |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/categorical-variable |
| keywords[0].score | 0.8600277304649353 |
| keywords[0].display_name | Categorical variable |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.6216422915458679 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.585448145866394 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.4854336380958557 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/variable |
| keywords[4].score | 0.4600970149040222 |
| keywords[4].display_name | Variable (mathematics) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.4291403591632843 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/software |
| keywords[6].score | 0.4246983528137207 |
| keywords[6].display_name | Software |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.4144299030303955 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/population |
| keywords[8].score | 0.41239702701568604 |
| keywords[8].display_name | Population |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.34458255767822266 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.32425087690353394 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.29231902956962585 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.22494390606880188 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.21037/atm.2017.08.22 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2755174949 |
| locations[0].source.issn | 2305-5839, 2305-5847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2305-5839 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Annals of Translational Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310321814 |
| locations[0].source.host_organization_name | AME Publishing Company |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321814 |
| locations[0].source.host_organization_lineage_names | AME Publishing Company |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://atm.amegroups.com/article/viewFile/16442/16556 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Annals of Translational Medicine |
| locations[0].landing_page_url | https://doi.org/10.21037/atm.2017.08.22 |
| locations[1].id | pmid:29201888 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Annals of translational medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/29201888 |
| locations[2].id | pmh:oai:europepmc.org:4624224 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5690964 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:5690964 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://doi.org/10.21037/atm.2017.08.22 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100320372 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2336-5323 |
| authorships[0].author.display_name | Zhongheng Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802390878, https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China |
| authorships[0].institutions[0].id | https://openalex.org/I2802390878 |
| authorships[0].institutions[0].ror | https://ror.org/00ka6rp58 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802390878 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sir Run Run Shaw Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I76130692 |
| authorships[0].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhongheng Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China |
| authorships[1].author.id | https://openalex.org/A5100461124 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6937-7936 |
| authorships[1].author.display_name | Haoyang Zhang |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I177725633 |
| authorships[1].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoyang Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China |
| authorships[2].author.id | https://openalex.org/A5016886109 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5324-2802 |
| authorships[2].author.display_name | Mahesh Kumar Khanal |
| authorships[2].countries | BD |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210112396 |
| authorships[2].affiliations[0].raw_affiliation_string | Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh |
| authorships[2].institutions[0].id | https://openalex.org/I4210112396 |
| authorships[2].institutions[0].ror | https://ror.org/01wajxa36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210112396 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | Bangladesh University of Health Sciences |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mahesh Kumar Khanal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Bangladesh Institute of Health Sciences (BIHS), Dhaka, Bangladesh |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://atm.amegroups.com/article/viewFile/16442/16556 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Development of scoring system for risk stratification in clinical medicine: a step-by-step tutorial |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.968999981880188 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4386799044, https://openalex.org/W2773208253, https://openalex.org/W2560646951, https://openalex.org/W4297454206, https://openalex.org/W65104662, https://openalex.org/W1871748041, https://openalex.org/W2362286668, https://openalex.org/W2133382151, https://openalex.org/W3121946870, https://openalex.org/W94371014 |
| cited_by_count | 82 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 19 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 12 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.21037/atm.2017.08.22 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2755174949 |
| best_oa_location.source.issn | 2305-5839, 2305-5847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2305-5839 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Annals of Translational Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310321814 |
| best_oa_location.source.host_organization_name | AME Publishing Company |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321814 |
| best_oa_location.source.host_organization_lineage_names | AME Publishing Company |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://atm.amegroups.com/article/viewFile/16442/16556 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Annals of Translational Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.21037/atm.2017.08.22 |
| primary_location.id | doi:10.21037/atm.2017.08.22 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2755174949 |
| primary_location.source.issn | 2305-5839, 2305-5847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2305-5839 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Annals of Translational Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310321814 |
| primary_location.source.host_organization_name | AME Publishing Company |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321814 |
| primary_location.source.host_organization_lineage_names | AME Publishing Company |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://atm.amegroups.com/article/viewFile/16442/16556 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Annals of Translational Medicine |
| primary_location.landing_page_url | https://doi.org/10.21037/atm.2017.08.22 |
| publication_date | 2017-11-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W6658147979, https://openalex.org/W2055838663, https://openalex.org/W2011861268, https://openalex.org/W2580821343, https://openalex.org/W2474667434, https://openalex.org/W2031968478, https://openalex.org/W2093260830, https://openalex.org/W2127752837, https://openalex.org/W2030346400, https://openalex.org/W2605975631, https://openalex.org/W4253016408, https://openalex.org/W2095745816, https://openalex.org/W2128349740, https://openalex.org/W2154286581 |
| referenced_works_count | 14 |
| abstract_inverted_index.R | 57, 154 |
| abstract_inverted_index.a | 40, 52 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.be | 30, 74 |
| abstract_inverted_index.by | 55, 84 |
| abstract_inverted_index.in | 6, 11, 100, 150, 160 |
| abstract_inverted_index.is | 37, 121, 138 |
| abstract_inverted_index.of | 16, 22, 34, 91, 108, 130 |
| abstract_inverted_index.on | 42, 51 |
| abstract_inverted_index.to | 38, 44, 76, 80, 97, 105, 126 |
| abstract_inverted_index.we | 61 |
| abstract_inverted_index.The | 32, 59, 135 |
| abstract_inverted_index.aim | 33 |
| abstract_inverted_index.and | 14, 27, 46, 65, 68, 113, 142, 146 |
| abstract_inverted_index.are | 95, 103, 148, 158 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 123 |
| abstract_inverted_index.how | 43 |
| abstract_inverted_index.the | 35, 70, 85, 98, 109, 118, 128, 131, 151, 161 |
| abstract_inverted_index.Risk | 0 |
| abstract_inverted_index.Then | 88 |
| abstract_inverted_index.With | 9 |
| abstract_inverted_index.each | 92, 106, 124 |
| abstract_inverted_index.into | 140 |
| abstract_inverted_index.less | 23 |
| abstract_inverted_index.main | 162 |
| abstract_inverted_index.play | 2 |
| abstract_inverted_index.risk | 48, 89 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.seen | 25 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.LOESS | 86 |
| abstract_inverted_index.based | 50 |
| abstract_inverted_index.codes | 155 |
| abstract_inverted_index.event | 133 |
| abstract_inverted_index.level | 107 |
| abstract_inverted_index.other | 114 |
| abstract_inverted_index.score | 120 |
| abstract_inverted_index.split | 139 |
| abstract_inverted_index.text. | 163 |
| abstract_inverted_index.total | 119 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.would | 73 |
| abstract_inverted_index.cutoff | 81 |
| abstract_inverted_index.factor | 77, 111 |
| abstract_inverted_index.points | 82, 90 |
| abstract_inverted_index.scores | 1, 49 |
| abstract_inverted_index.article | 36 |
| abstract_inverted_index.dataset | 54, 60, 137 |
| abstract_inverted_index.develop | 45 |
| abstract_inverted_index.firstly | 69 |
| abstract_inverted_index.numeric | 64, 71 |
| abstract_inverted_index.outcome | 132 |
| abstract_inverted_index.provide | 39 |
| abstract_inverted_index.record, | 19 |
| abstract_inverted_index.related | 96 |
| abstract_inverted_index.scoring | 20 |
| abstract_inverted_index.subject | 125 |
| abstract_inverted_index.subset. | 153 |
| abstract_inverted_index.systems | 21 |
| abstract_inverted_index.virtual | 53 |
| abstract_inverted_index.Finally, | 117 |
| abstract_inverted_index.advances | 10 |
| abstract_inverted_index.assigned | 104 |
| abstract_inverted_index.clinical | 7 |
| abstract_inverted_index.commonly | 24 |
| abstract_inverted_index.diseases | 26 |
| abstract_inverted_index.logistic | 101 |
| abstract_inverted_index.original | 136 |
| abstract_inverted_index.subsets. | 144 |
| abstract_inverted_index.training | 141 |
| abstract_inverted_index.tutorial | 41 |
| abstract_inverted_index.validate | 47 |
| abstract_inverted_index.according | 79 |
| abstract_inverted_index.converted | 75, 110 |
| abstract_inverted_index.evaluated | 149 |
| abstract_inverted_index.generated | 62 |
| abstract_inverted_index.important | 4 |
| abstract_inverted_index.including | 63 |
| abstract_inverted_index.medicine. | 8 |
| abstract_inverted_index.presented | 159 |
| abstract_inverted_index.represent | 127 |
| abstract_inverted_index.smoother. | 87 |
| abstract_inverted_index.software. | 58 |
| abstract_inverted_index.variable, | 93 |
| abstract_inverted_index.variables | 67, 72, 78, 112 |
| abstract_inverted_index.calculated | 122 |
| abstract_inverted_index.developed. | 31 |
| abstract_inverted_index.electronic | 17 |
| abstract_inverted_index.healthcare | 18 |
| abstract_inverted_index.identified | 83 |
| abstract_inverted_index.population | 28 |
| abstract_inverted_index.prediction | 129 |
| abstract_inverted_index.technology | 13 |
| abstract_inverted_index.validation | 143, 152 |
| abstract_inverted_index.variables. | 116 |
| abstract_inverted_index.calibration | 147 |
| abstract_inverted_index.categorical | 66, 115 |
| abstract_inverted_index.information | 12 |
| abstract_inverted_index.regression, | 102 |
| abstract_inverted_index.availability | 15 |
| abstract_inverted_index.coefficients | 99 |
| abstract_inverted_index.explanations | 157 |
| abstract_inverted_index.probability. | 134 |
| abstract_inverted_index.Discrimination | 145 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5100320372 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I2802390878, https://openalex.org/I76130692 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[1].score | 0.4000000059604645 |
| sustainable_development_goals[1].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.94003914 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |