DFG-NAS: Deep and Flexible Graph Neural Architecture Search Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2206.08582
Graph neural networks (GNNs) have been intensively applied to various graph-based applications. Despite their success, manually designing the well-behaved GNNs requires immense human expertise. And thus it is inefficient to discover the potentially optimal data-specific GNN architecture. This paper proposes DFG-NAS, a new neural architecture search (NAS) method that enables the automatic search of very deep and flexible GNN architectures. Unlike most existing methods that focus on micro-architectures, DFG-NAS highlights another level of design: the search for macro-architectures on how atomic propagation (\textbf{\texttt{P}}) and transformation (\textbf{\texttt{T}}) operations are integrated and organized into a GNN. To this end, DFG-NAS proposes a novel search space for \textbf{\texttt{P-T}} permutations and combinations based on message-passing dis-aggregation, defines four custom-designed macro-architecture mutations, and employs the evolutionary algorithm to conduct an efficient and effective search. Empirical studies on four node classification tasks demonstrate that DFG-NAS outperforms state-of-the-art manual designs and NAS methods of GNNs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2206.08582
- https://arxiv.org/pdf/2206.08582
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283216946
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283216946Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2206.08582Digital Object Identifier
- Title
-
DFG-NAS: Deep and Flexible Graph Neural Architecture SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-17Full publication date if available
- Authors
-
Wentao Zhang, Zheyu Lin, Yu Shen, Yang Li, Zhi Yang, Bin CuiList of authors in order
- Landing page
-
https://arxiv.org/abs/2206.08582Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2206.08582Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2206.08582Direct OA link when available
- Concepts
-
Computer science, Architecture, Graph, Macro, Focus (optics), Theoretical computer science, Artificial neural network, Evolutionary algorithm, Node (physics), Search algorithm, Artificial intelligence, Algorithm, Engineering, Programming language, Visual arts, Physics, Art, Optics, Structural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283216946 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2206.08582 |
| ids.doi | https://doi.org/10.48550/arxiv.2206.08582 |
| ids.openalex | https://openalex.org/W4283216946 |
| fwci | 0.58739646 |
| type | preprint |
| title | DFG-NAS: Deep and Flexible Graph Neural Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T12292 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9711999893188477 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Graph Theory and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7109382152557373 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C123657996 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6599412560462952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[1].display_name | Architecture |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6056828498840332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C166955791 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5682003498077393 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q629579 |
| concepts[3].display_name | Macro |
| concepts[4].id | https://openalex.org/C192209626 |
| concepts[4].level | 2 |
| concepts[4].score | 0.497193843126297 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[4].display_name | Focus (optics) |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4929070472717285 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49216026067733765 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C159149176 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4594181180000305 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[7].display_name | Evolutionary algorithm |
| concepts[8].id | https://openalex.org/C62611344 |
| concepts[8].level | 2 |
| concepts[8].score | 0.454670786857605 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[8].display_name | Node (physics) |
| concepts[9].id | https://openalex.org/C125583679 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45275071263313293 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q755673 |
| concepts[9].display_name | Search algorithm |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35784798860549927 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.20175394415855408 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10417324304580688 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07763171195983887 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C153349607 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[14].display_name | Visual arts |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| concepts[18].id | https://openalex.org/C66938386 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[18].display_name | Structural engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7109382152557373 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/architecture |
| keywords[1].score | 0.6599412560462952 |
| keywords[1].display_name | Architecture |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.6056828498840332 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/macro |
| keywords[3].score | 0.5682003498077393 |
| keywords[3].display_name | Macro |
| keywords[4].id | https://openalex.org/keywords/focus |
| keywords[4].score | 0.497193843126297 |
| keywords[4].display_name | Focus (optics) |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.4929070472717285 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.49216026067733765 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/evolutionary-algorithm |
| keywords[7].score | 0.4594181180000305 |
| keywords[7].display_name | Evolutionary algorithm |
| keywords[8].id | https://openalex.org/keywords/node |
| keywords[8].score | 0.454670786857605 |
| keywords[8].display_name | Node (physics) |
| keywords[9].id | https://openalex.org/keywords/search-algorithm |
| keywords[9].score | 0.45275071263313293 |
| keywords[9].display_name | Search algorithm |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.35784798860549927 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.20175394415855408 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.10417324304580688 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.07763171195983887 |
| keywords[13].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2206.08582 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2206.08582 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2206.08582 |
| locations[1].id | doi:10.48550/arxiv.2206.08582 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2206.08582 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008772211 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7532-5550 |
| authorships[0].author.display_name | Wentao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Wentao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5071112118 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8038-0549 |
| authorships[1].author.display_name | Zheyu Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Zheyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100770388 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6503-6504 |
| authorships[2].author.display_name | Yu Shen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shen, Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114377934 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2053-6393 |
| authorships[3].author.display_name | Yang Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100355790 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0871-5882 |
| authorships[4].author.display_name | Zhi Yang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yang, Zhi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5062357883 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1681-4677 |
| authorships[5].author.display_name | Bin Cui |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cui, Bin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2206.08582 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DFG-NAS: Deep and Flexible Graph Neural Architecture Search |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2030816003, https://openalex.org/W4239992647, https://openalex.org/W2150013480, https://openalex.org/W1554458299, https://openalex.org/W2076325756, https://openalex.org/W81423522, https://openalex.org/W1509860481, https://openalex.org/W2488264085, https://openalex.org/W4386206750, https://openalex.org/W4238700786 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2206.08582 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2206.08582 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2206.08582 |
| primary_location.id | pmh:oai:arXiv.org:2206.08582 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2206.08582 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2206.08582 |
| publication_date | 2022-06-17 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 92, 99 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.an | 124 |
| abstract_inverted_index.is | 27 |
| abstract_inverted_index.it | 26 |
| abstract_inverted_index.of | 53, 72, 146 |
| abstract_inverted_index.on | 66, 78, 109, 131 |
| abstract_inverted_index.to | 8, 29, 122 |
| abstract_inverted_index.And | 24 |
| abstract_inverted_index.GNN | 35, 58 |
| abstract_inverted_index.NAS | 144 |
| abstract_inverted_index.and | 56, 83, 89, 106, 117, 126, 143 |
| abstract_inverted_index.are | 87 |
| abstract_inverted_index.for | 76, 103 |
| abstract_inverted_index.how | 79 |
| abstract_inverted_index.new | 42 |
| abstract_inverted_index.the | 17, 31, 50, 74, 119 |
| abstract_inverted_index.GNN. | 93 |
| abstract_inverted_index.GNNs | 19 |
| abstract_inverted_index.This | 37 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.deep | 55 |
| abstract_inverted_index.end, | 96 |
| abstract_inverted_index.four | 113, 132 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.into | 91 |
| abstract_inverted_index.most | 61 |
| abstract_inverted_index.node | 133 |
| abstract_inverted_index.that | 48, 64, 137 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.thus | 25 |
| abstract_inverted_index.very | 54 |
| abstract_inverted_index.(NAS) | 46 |
| abstract_inverted_index.GNNs. | 147 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.focus | 65 |
| abstract_inverted_index.human | 22 |
| abstract_inverted_index.level | 71 |
| abstract_inverted_index.novel | 100 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.space | 102 |
| abstract_inverted_index.tasks | 135 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.Unlike | 60 |
| abstract_inverted_index.atomic | 80 |
| abstract_inverted_index.manual | 141 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.neural | 1, 43 |
| abstract_inverted_index.search | 45, 52, 75, 101 |
| abstract_inverted_index.DFG-NAS | 68, 97, 138 |
| abstract_inverted_index.Despite | 12 |
| abstract_inverted_index.another | 70 |
| abstract_inverted_index.applied | 7 |
| abstract_inverted_index.conduct | 123 |
| abstract_inverted_index.defines | 112 |
| abstract_inverted_index.design: | 73 |
| abstract_inverted_index.designs | 142 |
| abstract_inverted_index.employs | 118 |
| abstract_inverted_index.enables | 49 |
| abstract_inverted_index.immense | 21 |
| abstract_inverted_index.methods | 63, 145 |
| abstract_inverted_index.optimal | 33 |
| abstract_inverted_index.search. | 128 |
| abstract_inverted_index.studies | 130 |
| abstract_inverted_index.various | 9 |
| abstract_inverted_index.DFG-NAS, | 40 |
| abstract_inverted_index.discover | 30 |
| abstract_inverted_index.existing | 62 |
| abstract_inverted_index.flexible | 57 |
| abstract_inverted_index.manually | 15 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.proposes | 39, 98 |
| abstract_inverted_index.requires | 20 |
| abstract_inverted_index.success, | 14 |
| abstract_inverted_index.Empirical | 129 |
| abstract_inverted_index.algorithm | 121 |
| abstract_inverted_index.automatic | 51 |
| abstract_inverted_index.designing | 16 |
| abstract_inverted_index.effective | 127 |
| abstract_inverted_index.efficient | 125 |
| abstract_inverted_index.organized | 90 |
| abstract_inverted_index.expertise. | 23 |
| abstract_inverted_index.highlights | 69 |
| abstract_inverted_index.integrated | 88 |
| abstract_inverted_index.mutations, | 116 |
| abstract_inverted_index.operations | 86 |
| abstract_inverted_index.demonstrate | 136 |
| abstract_inverted_index.graph-based | 10 |
| abstract_inverted_index.inefficient | 28 |
| abstract_inverted_index.intensively | 6 |
| abstract_inverted_index.outperforms | 139 |
| abstract_inverted_index.potentially | 32 |
| abstract_inverted_index.propagation | 81 |
| abstract_inverted_index.architecture | 44 |
| abstract_inverted_index.combinations | 107 |
| abstract_inverted_index.evolutionary | 120 |
| abstract_inverted_index.permutations | 105 |
| abstract_inverted_index.well-behaved | 18 |
| abstract_inverted_index.applications. | 11 |
| abstract_inverted_index.architecture. | 36 |
| abstract_inverted_index.data-specific | 34 |
| abstract_inverted_index.architectures. | 59 |
| abstract_inverted_index.classification | 134 |
| abstract_inverted_index.transformation | 84 |
| abstract_inverted_index.custom-designed | 114 |
| abstract_inverted_index.message-passing | 110 |
| abstract_inverted_index.dis-aggregation, | 111 |
| abstract_inverted_index.state-of-the-art | 140 |
| abstract_inverted_index.macro-architecture | 115 |
| abstract_inverted_index.macro-architectures | 77 |
| abstract_inverted_index.micro-architectures, | 67 |
| abstract_inverted_index.(\textbf{\texttt{P}}) | 82 |
| abstract_inverted_index.(\textbf{\texttt{T}}) | 85 |
| abstract_inverted_index.\textbf{\texttt{P-T}} | 104 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.67473697 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |