DFT Calculated xyz and log Files as well as csv Files for Machine Learning in Support of "Tailoring Phosphine Ligands for Improved C H Activation: Insights from Δ-Machine Learning" Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.10529636
Transition metal complexes have played crucial roles in various homogeneous catalytic processes due to their exceptional versatility. This adaptability stems not only from the central metal ions but also from the vast array of choices of the ligand spheres, which form an enormously large chemical space. For example, Rh complexes, with a well-designed ligand sphere, are known to be efficient in catalyzing the C-H activation process in alkanes. To investigate the structure-property relation of the Rh complex and identify the optimal ligand that minimizes the calculated reaction energy ΔE of an alkane C-H activation, we have applied a Δ-Machine Learning method trained on various features to study 1,743 pairs of reactants (Rh(PLP)(Cl)(CO)) and intermediates (Rh(PLP)(Cl)(CO)(H)(propyl)). Our findings demonstrate that the models exhibit robust predictive performance when trained on features derived from electron density (R2 = 0.816), and SOAPs (R2 = 0.819), a set of position-based descriptors. Leveraging the model trained on xTB-SOAPs that only depend on the xTB-equilibrium structures, we propose an efficient and accurate screening procedure to explore the extensive chemical space of bisphosphine ligands. By applying this screening procedure, we identify ten newly selected reactant-intermediate pairs with an average ΔE of 33.2 kJ mol-1, remarkably lower than the average ΔE of the original data set of 68.0 kJ mol-1. This underscores the efficacy of our screening procedure in pinpointing structures with significantly lower energy levels. _______________________________________________________________________ The dataset contains three file types: Version 1.0: xyz files of the final optimized Rh-phosphine complexes; one set for the starting materials denoted as "molecule-XXXX_4-times" and one set for the intermediates after C-H activation denoted as "molecule-XXXX_6-times" Gaussian16 log files for the optimization process; one set for the starting materials denoted as "molecule-XXXX_4-times" and one set for the intermediates after C-H activation denoted as "molecule-XXXX_6-times" csv files containing the per molecule features used for training the different machine learning models. The name of the csv files indicates which property was predicted and which model was used New in version 1.1 (other data is unchanged): Gaussian16 log files for the ten newly identified bisphosphine ligands; one set for the product material denoted as "LXX_6-times-axial" and one set for the transition state for the C-H activation denoted as "LXX_C-H-activation_TS"
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.10529636
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393610923
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393610923Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.10529636Digital Object Identifier
- Title
-
DFT Calculated xyz and log Files as well as csv Files for Machine Learning in Support of "Tailoring Phosphine Ligands for Improved C H Activation: Insights from Δ-Machine Learning"Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-18Full publication date if available
- Authors
-
Tianbai Huang, Robert Geitner, Alexander Croy, Stefanie GräfeList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.10529636Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.10529636Direct OA link when available
- Concepts
-
Phosphine, Computer science, Chemistry, Artificial intelligence, Organic chemistry, CatalysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393610923 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.10529636 |
| ids.doi | https://doi.org/10.5281/zenodo.10529636 |
| ids.openalex | https://openalex.org/W4393610923 |
| fwci | |
| type | dataset |
| title | DFT Calculated xyz and log Files as well as csv Files for Machine Learning in Support of "Tailoring Phosphine Ligands for Improved C H Activation: Insights from Δ-Machine Learning" |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11831 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9607999920845032 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1605 |
| topics[0].subfield.display_name | Organic Chemistry |
| topics[0].display_name | Chemical Synthesis and Reactions |
| topics[1].id | https://openalex.org/T11407 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.95660001039505 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Innovative Microfluidic and Catalytic Techniques Innovation |
| topics[2].id | https://openalex.org/T10911 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9495999813079834 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Chemical Synthesis and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777716191 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7604067921638489 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207877 |
| concepts[0].display_name | Phosphine |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5136315226554871 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185592680 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3702089786529541 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[2].display_name | Chemistry |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32855281233787537 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C178790620 |
| concepts[4].level | 1 |
| concepts[4].score | 0.09036895632743835 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[4].display_name | Organic chemistry |
| concepts[5].id | https://openalex.org/C161790260 |
| concepts[5].level | 2 |
| concepts[5].score | 0.06369751691818237 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82264 |
| concepts[5].display_name | Catalysis |
| keywords[0].id | https://openalex.org/keywords/phosphine |
| keywords[0].score | 0.7604067921638489 |
| keywords[0].display_name | Phosphine |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5136315226554871 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/chemistry |
| keywords[2].score | 0.3702089786529541 |
| keywords[2].display_name | Chemistry |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.32855281233787537 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/organic-chemistry |
| keywords[4].score | 0.09036895632743835 |
| keywords[4].display_name | Organic chemistry |
| keywords[5].id | https://openalex.org/keywords/catalysis |
| keywords[5].score | 0.06369751691818237 |
| keywords[5].display_name | Catalysis |
| language | en |
| locations[0].id | doi:10.5281/zenodo.10529636 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.10529636 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5050984796 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-1302-0571 |
| authorships[0].author.display_name | Tianbai Huang |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76198965 |
| authorships[0].affiliations[0].raw_affiliation_string | Friedrich Schiller University Jena |
| authorships[0].institutions[0].id | https://openalex.org/I76198965 |
| authorships[0].institutions[0].ror | https://ror.org/05qpz1x62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76198965 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Friedrich Schiller University Jena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tianbai Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Friedrich Schiller University Jena |
| authorships[1].author.id | https://openalex.org/A5024122691 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5419-4451 |
| authorships[1].author.display_name | Robert Geitner |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119449181 |
| authorships[1].affiliations[0].raw_affiliation_string | Technische Universität Ilmenau |
| authorships[1].institutions[0].id | https://openalex.org/I119449181 |
| authorships[1].institutions[0].ror | https://ror.org/01weqhp73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119449181 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technische Universität Ilmenau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Robert Geitner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technische Universität Ilmenau |
| authorships[2].author.id | https://openalex.org/A5080265002 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9296-9350 |
| authorships[2].author.display_name | Alexander Croy |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76198965 |
| authorships[2].affiliations[0].raw_affiliation_string | Friedrich-Schiller-Universität Jena |
| authorships[2].institutions[0].id | https://openalex.org/I76198965 |
| authorships[2].institutions[0].ror | https://ror.org/05qpz1x62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76198965 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Friedrich Schiller University Jena |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alexander Croy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Friedrich-Schiller-Universität Jena |
| authorships[3].author.id | https://openalex.org/A5083954031 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1747-5809 |
| authorships[3].author.display_name | Stefanie Gräfe |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76198965 |
| authorships[3].affiliations[0].raw_affiliation_string | Friedrich Schiller University Jena |
| authorships[3].institutions[0].id | https://openalex.org/I76198965 |
| authorships[3].institutions[0].ror | https://ror.org/05qpz1x62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76198965 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Friedrich Schiller University Jena |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Stefanie Gräfe |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Friedrich Schiller University Jena |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.10529636 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DFT Calculated xyz and log Files as well as csv Files for Machine Learning in Support of "Tailoring Phosphine Ligands for Improved C H Activation: Insights from Δ-Machine Learning" |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11831 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9607999920845032 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1605 |
| primary_topic.subfield.display_name | Organic Chemistry |
| primary_topic.display_name | Chemical Synthesis and Reactions |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487, https://openalex.org/W1986764834, https://openalex.org/W657579294 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.10529636 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.10529636 |
| primary_location.id | doi:10.5281/zenodo.10529636 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.10529636 |
| publication_date | 2024-01-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 134, 139 |
| abstract_inverted_index.a | 51, 97, 141 |
| abstract_inverted_index.By | 176 |
| abstract_inverted_index.Rh | 48, 75 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.an | 41, 90, 161, 189 |
| abstract_inverted_index.as | 251, 263, 279, 291, 349, 363 |
| abstract_inverted_index.be | 58 |
| abstract_inverted_index.in | 7, 60, 66, 219, 325 |
| abstract_inverted_index.is | 330 |
| abstract_inverted_index.kJ | 194, 209 |
| abstract_inverted_index.of | 33, 35, 73, 89, 109, 143, 173, 192, 202, 207, 215, 238, 310 |
| abstract_inverted_index.on | 102, 127, 150, 155 |
| abstract_inverted_index.to | 13, 57, 105, 167 |
| abstract_inverted_index.we | 94, 159, 181 |
| abstract_inverted_index.(R2 | 133, 138 |
| abstract_inverted_index.1.1 | 327 |
| abstract_inverted_index.C-H | 63, 92, 260, 288, 360 |
| abstract_inverted_index.For | 46 |
| abstract_inverted_index.New | 324 |
| abstract_inverted_index.Our | 115 |
| abstract_inverted_index.The | 228, 308 |
| abstract_inverted_index.and | 77, 112, 136, 163, 253, 281, 319, 351 |
| abstract_inverted_index.are | 55 |
| abstract_inverted_index.but | 27 |
| abstract_inverted_index.csv | 293, 312 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.for | 246, 256, 268, 274, 284, 301, 335, 344, 354, 358 |
| abstract_inverted_index.log | 266, 333 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.one | 244, 254, 272, 282, 342, 352 |
| abstract_inverted_index.our | 216 |
| abstract_inverted_index.per | 297 |
| abstract_inverted_index.set | 142, 206, 245, 255, 273, 283, 343, 353 |
| abstract_inverted_index.ten | 183, 337 |
| abstract_inverted_index.the | 23, 30, 36, 62, 70, 74, 79, 84, 119, 147, 156, 169, 199, 203, 213, 239, 247, 257, 269, 275, 285, 296, 303, 311, 336, 345, 355, 359 |
| abstract_inverted_index.was | 317, 322 |
| abstract_inverted_index.xyz | 236 |
| abstract_inverted_index.ΔE | 88, 191, 201 |
| abstract_inverted_index.1.0: | 235 |
| abstract_inverted_index.33.2 | 193 |
| abstract_inverted_index.68.0 | 208 |
| abstract_inverted_index.This | 17, 211 |
| abstract_inverted_index.also | 28 |
| abstract_inverted_index.data | 205, 329 |
| abstract_inverted_index.file | 232 |
| abstract_inverted_index.form | 40 |
| abstract_inverted_index.from | 22, 29, 130 |
| abstract_inverted_index.have | 3, 95 |
| abstract_inverted_index.ions | 26 |
| abstract_inverted_index.name | 309 |
| abstract_inverted_index.only | 21, 153 |
| abstract_inverted_index.than | 198 |
| abstract_inverted_index.that | 82, 118, 152 |
| abstract_inverted_index.this | 178 |
| abstract_inverted_index.used | 300, 323 |
| abstract_inverted_index.vast | 31 |
| abstract_inverted_index.when | 125 |
| abstract_inverted_index.with | 50, 188, 222 |
| abstract_inverted_index.1,743 | 107 |
| abstract_inverted_index.SOAPs | 137 |
| abstract_inverted_index.after | 259, 287 |
| abstract_inverted_index.array | 32 |
| abstract_inverted_index.files | 237, 267, 294, 313, 334 |
| abstract_inverted_index.final | 240 |
| abstract_inverted_index.known | 56 |
| abstract_inverted_index.large | 43 |
| abstract_inverted_index.lower | 197, 224 |
| abstract_inverted_index.metal | 1, 25 |
| abstract_inverted_index.model | 148, 321 |
| abstract_inverted_index.newly | 184, 338 |
| abstract_inverted_index.pairs | 108, 187 |
| abstract_inverted_index.roles | 6 |
| abstract_inverted_index.space | 172 |
| abstract_inverted_index.state | 357 |
| abstract_inverted_index.stems | 19 |
| abstract_inverted_index.study | 106 |
| abstract_inverted_index.their | 14 |
| abstract_inverted_index.three | 231 |
| abstract_inverted_index.which | 39, 315, 320 |
| abstract_inverted_index.(other | 328 |
| abstract_inverted_index.alkane | 91 |
| abstract_inverted_index.depend | 154 |
| abstract_inverted_index.energy | 87, 225 |
| abstract_inverted_index.ligand | 37, 53, 81 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.mol-1, | 195 |
| abstract_inverted_index.mol-1. | 210 |
| abstract_inverted_index.played | 4 |
| abstract_inverted_index.robust | 122 |
| abstract_inverted_index.space. | 45 |
| abstract_inverted_index.types: | 233 |
| abstract_inverted_index.0.816), | 135 |
| abstract_inverted_index.0.819), | 140 |
| abstract_inverted_index.Version | 234 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.average | 190, 200 |
| abstract_inverted_index.central | 24 |
| abstract_inverted_index.choices | 34 |
| abstract_inverted_index.complex | 76 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.dataset | 229 |
| abstract_inverted_index.denoted | 250, 262, 278, 290, 348, 362 |
| abstract_inverted_index.density | 132 |
| abstract_inverted_index.derived | 129 |
| abstract_inverted_index.exhibit | 121 |
| abstract_inverted_index.explore | 168 |
| abstract_inverted_index.levels. | 226 |
| abstract_inverted_index.machine | 305 |
| abstract_inverted_index.models. | 307 |
| abstract_inverted_index.optimal | 80 |
| abstract_inverted_index.process | 65 |
| abstract_inverted_index.product | 346 |
| abstract_inverted_index.propose | 160 |
| abstract_inverted_index.sphere, | 54 |
| abstract_inverted_index.trained | 101, 126, 149 |
| abstract_inverted_index.various | 8, 103 |
| abstract_inverted_index.version | 326 |
| abstract_inverted_index.Learning | 99 |
| abstract_inverted_index.accurate | 164 |
| abstract_inverted_index.alkanes. | 67 |
| abstract_inverted_index.applying | 177 |
| abstract_inverted_index.chemical | 44, 171 |
| abstract_inverted_index.contains | 230 |
| abstract_inverted_index.efficacy | 214 |
| abstract_inverted_index.electron | 131 |
| abstract_inverted_index.example, | 47 |
| abstract_inverted_index.features | 104, 128, 299 |
| abstract_inverted_index.findings | 116 |
| abstract_inverted_index.identify | 78, 182 |
| abstract_inverted_index.learning | 306 |
| abstract_inverted_index.ligands. | 175 |
| abstract_inverted_index.ligands; | 341 |
| abstract_inverted_index.material | 347 |
| abstract_inverted_index.molecule | 298 |
| abstract_inverted_index.original | 204 |
| abstract_inverted_index.process; | 271 |
| abstract_inverted_index.property | 316 |
| abstract_inverted_index.reaction | 86 |
| abstract_inverted_index.relation | 72 |
| abstract_inverted_index.selected | 185 |
| abstract_inverted_index.spheres, | 38 |
| abstract_inverted_index.starting | 248, 276 |
| abstract_inverted_index.training | 302 |
| abstract_inverted_index.catalytic | 10 |
| abstract_inverted_index.complexes | 2 |
| abstract_inverted_index.different | 304 |
| abstract_inverted_index.efficient | 59, 162 |
| abstract_inverted_index.extensive | 170 |
| abstract_inverted_index.indicates | 314 |
| abstract_inverted_index.materials | 249, 277 |
| abstract_inverted_index.minimizes | 83 |
| abstract_inverted_index.optimized | 241 |
| abstract_inverted_index.predicted | 318 |
| abstract_inverted_index.procedure | 166, 218 |
| abstract_inverted_index.processes | 11 |
| abstract_inverted_index.reactants | 110 |
| abstract_inverted_index.screening | 165, 179, 217 |
| abstract_inverted_index.xTB-SOAPs | 151 |
| abstract_inverted_index.Gaussian16 | 265, 332 |
| abstract_inverted_index.Leveraging | 146 |
| abstract_inverted_index.Transition | 0 |
| abstract_inverted_index.activation | 64, 261, 289, 361 |
| abstract_inverted_index.calculated | 85 |
| abstract_inverted_index.catalyzing | 61 |
| abstract_inverted_index.complexes, | 49 |
| abstract_inverted_index.complexes; | 243 |
| abstract_inverted_index.containing | 295 |
| abstract_inverted_index.enormously | 42 |
| abstract_inverted_index.identified | 339 |
| abstract_inverted_index.predictive | 123 |
| abstract_inverted_index.procedure, | 180 |
| abstract_inverted_index.remarkably | 196 |
| abstract_inverted_index.structures | 221 |
| abstract_inverted_index.transition | 356 |
| abstract_inverted_index.Δ-Machine | 98 |
| abstract_inverted_index.activation, | 93 |
| abstract_inverted_index.demonstrate | 117 |
| abstract_inverted_index.exceptional | 15 |
| abstract_inverted_index.homogeneous | 9 |
| abstract_inverted_index.investigate | 69 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.pinpointing | 220 |
| abstract_inverted_index.structures, | 158 |
| abstract_inverted_index.unchanged): | 331 |
| abstract_inverted_index.underscores | 212 |
| abstract_inverted_index.Rh-phosphine | 242 |
| abstract_inverted_index.adaptability | 18 |
| abstract_inverted_index.bisphosphine | 174, 340 |
| abstract_inverted_index.descriptors. | 145 |
| abstract_inverted_index.optimization | 270 |
| abstract_inverted_index.versatility. | 16 |
| abstract_inverted_index.intermediates | 113, 258, 286 |
| abstract_inverted_index.significantly | 223 |
| abstract_inverted_index.well-designed | 52 |
| abstract_inverted_index.position-based | 144 |
| abstract_inverted_index.xTB-equilibrium | 157 |
| abstract_inverted_index.(Rh(PLP)(Cl)(CO)) | 111 |
| abstract_inverted_index.structure-property | 71 |
| abstract_inverted_index."LXX_6-times-axial" | 350 |
| abstract_inverted_index.reactant-intermediate | 186 |
| abstract_inverted_index."LXX_C-H-activation_TS" | 364 |
| abstract_inverted_index."molecule-XXXX_4-times" | 252, 280 |
| abstract_inverted_index."molecule-XXXX_6-times" | 264, 292 |
| abstract_inverted_index.(Rh(PLP)(Cl)(CO)(H)(propyl)). | 114 |
| abstract_inverted_index._______________________________________________________________________ | 227 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |