DGR: A General Graph Desmoothing Framework for Recommendation via Global and Local Perspectives Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.04287
Graph Convolutional Networks (GCNs) have become pivotal in recommendation systems for learning user and item embeddings by leveraging the user-item interaction graph's node information and topology. However, these models often face the famous over-smoothing issue, leading to indistinct user and item embeddings and reduced personalization. Traditional desmoothing methods in GCN-based systems are model-specific, lacking a universal solution. This paper introduces a novel, model-agnostic approach named \textbf{D}esmoothing Framework for \textbf{G}CN-based \textbf{R}ecommendation Systems (\textbf{DGR}). It effectively addresses over-smoothing on general GCN-based recommendation models by considering both global and local perspectives. Specifically, we first introduce vector perturbations during each message passing layer to penalize the tendency of node embeddings approximating overly to be similar with the guidance of the global topological structure. Meanwhile, we further develop a tailored-design loss term for the readout embeddings to preserve the local collaborative relations between users and their neighboring items. In particular, items that exhibit a high correlation with neighboring items are also incorporated to enhance the local topological information. To validate our approach, we conduct extensive experiments on 5 benchmark datasets based on 5 well-known GCN-based recommendation models, demonstrating the effectiveness and generalization of our proposed framework.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.04287
- https://arxiv.org/pdf/2403.04287
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392616963
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392616963Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.04287Digital Object Identifier
- Title
-
DGR: A General Graph Desmoothing Framework for Recommendation via Global and Local PerspectivesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-07Full publication date if available
- Authors
-
L. K. Ding, Dazhong Shen, Chao Wang, Tianfu Wang, Le Zhang, Hui Xiong, Yanyong ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.04287Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.04287Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.04287Direct OA link when available
- Concepts
-
Graph, Computer science, Data science, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392616963 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.04287 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.04287 |
| ids.openalex | https://openalex.org/W4392616963 |
| fwci | |
| type | preprint |
| title | DGR: A General Graph Desmoothing Framework for Recommendation via Global and Local Perspectives |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8802000284194946 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T12392 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.8109999895095825 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1406 |
| topics[1].subfield.display_name | Marketing |
| topics[1].display_name | Sharing Economy and Platforms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5520122051239014 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5379166603088379 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.33388447761535645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C80444323 |
| concepts[3].level | 1 |
| concepts[3].score | 0.31124448776245117 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[3].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.5520122051239014 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5379166603088379 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.33388447761535645 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[3].score | 0.31124448776245117 |
| keywords[3].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.04287 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.04287 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.04287 |
| locations[1].id | doi:10.48550/arxiv.2403.04287 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.04287 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082406073 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0641-3423 |
| authorships[0].author.display_name | L. K. Ding |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ding, Leilei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075007087 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3947-4153 |
| authorships[1].author.display_name | Dazhong Shen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shen, Dazhong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5115595184 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7885-9673 |
| authorships[2].author.display_name | Chao Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Chao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046543349 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1248-1214 |
| authorships[3].author.display_name | Tianfu Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Tianfu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5030341301 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1257-5229 |
| authorships[4].author.display_name | Le Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Le |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101862104 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6016-6465 |
| authorships[5].author.display_name | Hui Xiong |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xiong, Hui |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5103041851 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9046-798X |
| authorships[6].author.display_name | Yanyong Zhang |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhang, Yanyong |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.04287 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DGR: A General Graph Desmoothing Framework for Recommendation via Global and Local Perspectives |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8802000284194946 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.04287 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.04287 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.04287 |
| primary_location.id | pmh:oai:arXiv.org:2403.04287 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.04287 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.04287 |
| publication_date | 2024-03-07 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 172, 177 |
| abstract_inverted_index.a | 54, 60, 123, 148 |
| abstract_inverted_index.In | 143 |
| abstract_inverted_index.It | 72 |
| abstract_inverted_index.To | 163 |
| abstract_inverted_index.be | 109 |
| abstract_inverted_index.by | 16, 81 |
| abstract_inverted_index.in | 7, 48 |
| abstract_inverted_index.of | 103, 114, 187 |
| abstract_inverted_index.on | 76, 171, 176 |
| abstract_inverted_index.to | 36, 99, 108, 131, 157 |
| abstract_inverted_index.we | 89, 120, 167 |
| abstract_inverted_index.and | 13, 24, 39, 42, 85, 139, 185 |
| abstract_inverted_index.are | 51, 154 |
| abstract_inverted_index.for | 10, 67, 127 |
| abstract_inverted_index.our | 165, 188 |
| abstract_inverted_index.the | 18, 31, 101, 112, 115, 128, 133, 159, 183 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.also | 155 |
| abstract_inverted_index.both | 83 |
| abstract_inverted_index.each | 95 |
| abstract_inverted_index.face | 30 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 149 |
| abstract_inverted_index.item | 14, 40 |
| abstract_inverted_index.loss | 125 |
| abstract_inverted_index.node | 22, 104 |
| abstract_inverted_index.term | 126 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.user | 12, 38 |
| abstract_inverted_index.with | 111, 151 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.based | 175 |
| abstract_inverted_index.first | 90 |
| abstract_inverted_index.items | 145, 153 |
| abstract_inverted_index.layer | 98 |
| abstract_inverted_index.local | 86, 134, 160 |
| abstract_inverted_index.named | 64 |
| abstract_inverted_index.often | 29 |
| abstract_inverted_index.paper | 58 |
| abstract_inverted_index.their | 140 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.users | 138 |
| abstract_inverted_index.(GCNs) | 3 |
| abstract_inverted_index.become | 5 |
| abstract_inverted_index.during | 94 |
| abstract_inverted_index.famous | 32 |
| abstract_inverted_index.global | 84, 116 |
| abstract_inverted_index.issue, | 34 |
| abstract_inverted_index.items. | 142 |
| abstract_inverted_index.models | 28, 80 |
| abstract_inverted_index.novel, | 61 |
| abstract_inverted_index.overly | 107 |
| abstract_inverted_index.vector | 92 |
| abstract_inverted_index.Systems | 70 |
| abstract_inverted_index.between | 137 |
| abstract_inverted_index.conduct | 168 |
| abstract_inverted_index.develop | 122 |
| abstract_inverted_index.enhance | 158 |
| abstract_inverted_index.exhibit | 147 |
| abstract_inverted_index.further | 121 |
| abstract_inverted_index.general | 77 |
| abstract_inverted_index.graph's | 21 |
| abstract_inverted_index.lacking | 53 |
| abstract_inverted_index.leading | 35 |
| abstract_inverted_index.message | 96 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.models, | 181 |
| abstract_inverted_index.passing | 97 |
| abstract_inverted_index.pivotal | 6 |
| abstract_inverted_index.readout | 129 |
| abstract_inverted_index.reduced | 43 |
| abstract_inverted_index.similar | 110 |
| abstract_inverted_index.systems | 9, 50 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.approach | 63 |
| abstract_inverted_index.datasets | 174 |
| abstract_inverted_index.guidance | 113 |
| abstract_inverted_index.learning | 11 |
| abstract_inverted_index.penalize | 100 |
| abstract_inverted_index.preserve | 132 |
| abstract_inverted_index.proposed | 189 |
| abstract_inverted_index.tendency | 102 |
| abstract_inverted_index.validate | 164 |
| abstract_inverted_index.Framework | 66 |
| abstract_inverted_index.GCN-based | 49, 78, 179 |
| abstract_inverted_index.addresses | 74 |
| abstract_inverted_index.approach, | 166 |
| abstract_inverted_index.benchmark | 173 |
| abstract_inverted_index.extensive | 169 |
| abstract_inverted_index.introduce | 91 |
| abstract_inverted_index.relations | 136 |
| abstract_inverted_index.solution. | 56 |
| abstract_inverted_index.topology. | 25 |
| abstract_inverted_index.universal | 55 |
| abstract_inverted_index.user-item | 19 |
| abstract_inverted_index.Meanwhile, | 119 |
| abstract_inverted_index.embeddings | 15, 41, 105, 130 |
| abstract_inverted_index.framework. | 190 |
| abstract_inverted_index.indistinct | 37 |
| abstract_inverted_index.introduces | 59 |
| abstract_inverted_index.leveraging | 17 |
| abstract_inverted_index.structure. | 118 |
| abstract_inverted_index.well-known | 178 |
| abstract_inverted_index.Traditional | 45 |
| abstract_inverted_index.considering | 82 |
| abstract_inverted_index.correlation | 150 |
| abstract_inverted_index.desmoothing | 46 |
| abstract_inverted_index.effectively | 73 |
| abstract_inverted_index.experiments | 170 |
| abstract_inverted_index.information | 23 |
| abstract_inverted_index.interaction | 20 |
| abstract_inverted_index.neighboring | 141, 152 |
| abstract_inverted_index.particular, | 144 |
| abstract_inverted_index.topological | 117, 161 |
| abstract_inverted_index.incorporated | 156 |
| abstract_inverted_index.information. | 162 |
| abstract_inverted_index.Convolutional | 1 |
| abstract_inverted_index.Specifically, | 88 |
| abstract_inverted_index.approximating | 106 |
| abstract_inverted_index.collaborative | 135 |
| abstract_inverted_index.demonstrating | 182 |
| abstract_inverted_index.effectiveness | 184 |
| abstract_inverted_index.perspectives. | 87 |
| abstract_inverted_index.perturbations | 93 |
| abstract_inverted_index.generalization | 186 |
| abstract_inverted_index.model-agnostic | 62 |
| abstract_inverted_index.over-smoothing | 33, 75 |
| abstract_inverted_index.recommendation | 8, 79, 180 |
| abstract_inverted_index.(\textbf{DGR}). | 71 |
| abstract_inverted_index.model-specific, | 52 |
| abstract_inverted_index.tailored-design | 124 |
| abstract_inverted_index.personalization. | 44 |
| abstract_inverted_index.\textbf{G}CN-based | 68 |
| abstract_inverted_index.\textbf{D}esmoothing | 65 |
| abstract_inverted_index.\textbf{R}ecommendation | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |