Diabetes Prediction using Machine Learning Techniques Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.36548/jaicn.2023.2.008
Now a day due to hectic schedules and sedentary lifestyle people do not follow the proper diet. Poor diet may lead to diabetes, and which could result in various health issues such as heart attacks, strokes, renal failure, nerve damage, etc. When diabetes is accurately detected in its early stage , it can be effectively treated. By using Machine Learning methods, the problem can be easily detected and a solution could bearrived. Early diabetes detection and prediction can be greatly improved with machine learning (ML) approaches. When it is detected in an early stage, it can be resolved quickly. The objective of this research is to provide prediction using various supervised machine learning methods. Seven algorithms are compared with each other to figure out which is the best. The algorithms are Logistic Regression, Random Forest, Decision Tree, K-Nearest Neighbor, Support Vector Machine, Naïve Bayes, Gradient Boosting. The evaluation results stated that Logistic Regression is more accurate than other algorithms for the given data set with an accuracy of 82%. After selecting the ML model which is more accurate. A User Interface where users can enter the new data and get results was developed and the results to the user were forwarded through WhatsApp along with some suggestions and precautions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36548/jaicn.2023.2.008
- OA Status
- diamond
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382798960
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382798960Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36548/jaicn.2023.2.008Digital Object Identifier
- Title
-
Diabetes Prediction using Machine Learning TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-01Full publication date if available
- Authors
-
V. A. Jithendra, Reza Mohit, Margam Madhusudhan, Jagadeesh Basavaiah, S. KusumaList of authors in order
- Landing page
-
https://doi.org/10.36548/jaicn.2023.2.008Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36548/jaicn.2023.2.008Direct OA link when available
- Concepts
-
Machine learning, Decision tree, Naive Bayes classifier, Random forest, Artificial intelligence, Computer science, Logistic regression, Support vector machine, Gradient boosting, Boosting (machine learning), Supervised learning, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2020: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382798960 |
|---|---|
| doi | https://doi.org/10.36548/jaicn.2023.2.008 |
| ids.doi | https://doi.org/10.36548/jaicn.2023.2.008 |
| ids.openalex | https://openalex.org/W4382798960 |
| fwci | 3.18490991 |
| type | article |
| title | Diabetes Prediction using Machine Learning Techniques |
| biblio.issue | 2 |
| biblio.volume | 5 |
| biblio.last_page | 206 |
| biblio.first_page | 190 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119857082 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7975298166275024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[0].display_name | Machine learning |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7389419674873352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C52001869 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7342240810394287 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[2].display_name | Naive Bayes classifier |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7191014289855957 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.7181872725486755 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6657045483589172 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C151956035 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6617534160614014 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[6].display_name | Logistic regression |
| concepts[7].id | https://openalex.org/C12267149 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6009588241577148 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[7].display_name | Support vector machine |
| concepts[8].id | https://openalex.org/C70153297 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4653834402561188 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[8].display_name | Gradient boosting |
| concepts[9].id | https://openalex.org/C46686674 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42323780059814453 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[9].display_name | Boosting (machine learning) |
| concepts[10].id | https://openalex.org/C136389625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4149675965309143 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[10].display_name | Supervised learning |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.14131829142570496 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/machine-learning |
| keywords[0].score | 0.7975298166275024 |
| keywords[0].display_name | Machine learning |
| keywords[1].id | https://openalex.org/keywords/decision-tree |
| keywords[1].score | 0.7389419674873352 |
| keywords[1].display_name | Decision tree |
| keywords[2].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[2].score | 0.7342240810394287 |
| keywords[2].display_name | Naive Bayes classifier |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.7191014289855957 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.7181872725486755 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6657045483589172 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/logistic-regression |
| keywords[6].score | 0.6617534160614014 |
| keywords[6].display_name | Logistic regression |
| keywords[7].id | https://openalex.org/keywords/support-vector-machine |
| keywords[7].score | 0.6009588241577148 |
| keywords[7].display_name | Support vector machine |
| keywords[8].id | https://openalex.org/keywords/gradient-boosting |
| keywords[8].score | 0.4653834402561188 |
| keywords[8].display_name | Gradient boosting |
| keywords[9].id | https://openalex.org/keywords/boosting |
| keywords[9].score | 0.42323780059814453 |
| keywords[9].display_name | Boosting (machine learning) |
| keywords[10].id | https://openalex.org/keywords/supervised-learning |
| keywords[10].score | 0.4149675965309143 |
| keywords[10].display_name | Supervised learning |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.14131829142570496 |
| keywords[11].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.36548/jaicn.2023.2.008 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210216842 |
| locations[0].source.issn | 2582-2012 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2582-2012 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| locations[0].landing_page_url | https://doi.org/10.36548/jaicn.2023.2.008 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092376719 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | V. A. Jithendra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | V Jithendra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041892736 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Reza Mohit |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | R M Sai Mohit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5088437722 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1174-2099 |
| authorships[2].author.display_name | Margam Madhusudhan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M Madhusudhan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018719467 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jagadeesh Basavaiah |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | B Jagadeesh |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046170521 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | S. Kusuma |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | S Kusuma |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36548/jaicn.2023.2.008 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diabetes Prediction using Machine Learning Techniques |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2885778889, https://openalex.org/W2766514146, https://openalex.org/W2885516856, https://openalex.org/W4289703016, https://openalex.org/W4310224730, https://openalex.org/W1985505753 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36548/jaicn.2023.2.008 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210216842 |
| best_oa_location.source.issn | 2582-2012 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2582-2012 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| best_oa_location.landing_page_url | https://doi.org/10.36548/jaicn.2023.2.008 |
| primary_location.id | doi:10.36548/jaicn.2023.2.008 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210216842 |
| primary_location.source.issn | 2582-2012 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2582-2012 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| primary_location.landing_page_url | https://doi.org/10.36548/jaicn.2023.2.008 |
| publication_date | 2023-06-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index., | 50 |
| abstract_inverted_index.A | 178 |
| abstract_inverted_index.a | 1, 68 |
| abstract_inverted_index.By | 56 |
| abstract_inverted_index.ML | 172 |
| abstract_inverted_index.an | 91, 165 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.be | 53, 64, 78, 96 |
| abstract_inverted_index.do | 11 |
| abstract_inverted_index.in | 27, 46, 90 |
| abstract_inverted_index.is | 43, 88, 104, 125, 153, 175 |
| abstract_inverted_index.it | 51, 87, 94 |
| abstract_inverted_index.of | 101, 167 |
| abstract_inverted_index.to | 4, 21, 105, 121, 196 |
| abstract_inverted_index.Now | 0 |
| abstract_inverted_index.The | 99, 128, 146 |
| abstract_inverted_index.and | 7, 23, 67, 75, 188, 193, 207 |
| abstract_inverted_index.are | 116, 130 |
| abstract_inverted_index.can | 52, 63, 77, 95, 183 |
| abstract_inverted_index.day | 2 |
| abstract_inverted_index.due | 3 |
| abstract_inverted_index.for | 159 |
| abstract_inverted_index.get | 189 |
| abstract_inverted_index.its | 47 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.new | 186 |
| abstract_inverted_index.not | 12 |
| abstract_inverted_index.out | 123 |
| abstract_inverted_index.set | 163 |
| abstract_inverted_index.the | 14, 61, 126, 160, 171, 185, 194, 197 |
| abstract_inverted_index.was | 191 |
| abstract_inverted_index.(ML) | 84 |
| abstract_inverted_index.82%. | 168 |
| abstract_inverted_index.Poor | 17 |
| abstract_inverted_index.User | 179 |
| abstract_inverted_index.When | 41, 86 |
| abstract_inverted_index.data | 162, 187 |
| abstract_inverted_index.diet | 18 |
| abstract_inverted_index.each | 119 |
| abstract_inverted_index.etc. | 40 |
| abstract_inverted_index.lead | 20 |
| abstract_inverted_index.more | 154, 176 |
| abstract_inverted_index.some | 205 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.than | 156 |
| abstract_inverted_index.that | 150 |
| abstract_inverted_index.this | 102 |
| abstract_inverted_index.user | 198 |
| abstract_inverted_index.were | 199 |
| abstract_inverted_index.with | 81, 118, 164, 204 |
| abstract_inverted_index.After | 169 |
| abstract_inverted_index.Early | 72 |
| abstract_inverted_index.Seven | 114 |
| abstract_inverted_index.Tree, | 136 |
| abstract_inverted_index.along | 203 |
| abstract_inverted_index.best. | 127 |
| abstract_inverted_index.could | 25, 70 |
| abstract_inverted_index.diet. | 16 |
| abstract_inverted_index.early | 48, 92 |
| abstract_inverted_index.enter | 184 |
| abstract_inverted_index.given | 161 |
| abstract_inverted_index.heart | 33 |
| abstract_inverted_index.model | 173 |
| abstract_inverted_index.nerve | 38 |
| abstract_inverted_index.other | 120, 157 |
| abstract_inverted_index.renal | 36 |
| abstract_inverted_index.stage | 49 |
| abstract_inverted_index.users | 182 |
| abstract_inverted_index.using | 57, 108 |
| abstract_inverted_index.where | 181 |
| abstract_inverted_index.which | 24, 124, 174 |
| abstract_inverted_index.Bayes, | 143 |
| abstract_inverted_index.Naïve | 142 |
| abstract_inverted_index.Random | 133 |
| abstract_inverted_index.Vector | 140 |
| abstract_inverted_index.easily | 65 |
| abstract_inverted_index.figure | 122 |
| abstract_inverted_index.follow | 13 |
| abstract_inverted_index.health | 29 |
| abstract_inverted_index.hectic | 5 |
| abstract_inverted_index.issues | 30 |
| abstract_inverted_index.people | 10 |
| abstract_inverted_index.proper | 15 |
| abstract_inverted_index.result | 26 |
| abstract_inverted_index.stage, | 93 |
| abstract_inverted_index.stated | 149 |
| abstract_inverted_index.Forest, | 134 |
| abstract_inverted_index.Machine | 58 |
| abstract_inverted_index.Support | 139 |
| abstract_inverted_index.damage, | 39 |
| abstract_inverted_index.greatly | 79 |
| abstract_inverted_index.machine | 82, 111 |
| abstract_inverted_index.problem | 62 |
| abstract_inverted_index.provide | 106 |
| abstract_inverted_index.results | 148, 190, 195 |
| abstract_inverted_index.through | 201 |
| abstract_inverted_index.various | 28, 109 |
| abstract_inverted_index.Decision | 135 |
| abstract_inverted_index.Gradient | 144 |
| abstract_inverted_index.Learning | 59 |
| abstract_inverted_index.Logistic | 131, 151 |
| abstract_inverted_index.Machine, | 141 |
| abstract_inverted_index.WhatsApp | 202 |
| abstract_inverted_index.accuracy | 166 |
| abstract_inverted_index.accurate | 155 |
| abstract_inverted_index.attacks, | 34 |
| abstract_inverted_index.compared | 117 |
| abstract_inverted_index.detected | 45, 66, 89 |
| abstract_inverted_index.diabetes | 42, 73 |
| abstract_inverted_index.failure, | 37 |
| abstract_inverted_index.improved | 80 |
| abstract_inverted_index.learning | 83, 112 |
| abstract_inverted_index.methods, | 60 |
| abstract_inverted_index.methods. | 113 |
| abstract_inverted_index.quickly. | 98 |
| abstract_inverted_index.research | 103 |
| abstract_inverted_index.resolved | 97 |
| abstract_inverted_index.solution | 69 |
| abstract_inverted_index.strokes, | 35 |
| abstract_inverted_index.treated. | 55 |
| abstract_inverted_index.Boosting. | 145 |
| abstract_inverted_index.Interface | 180 |
| abstract_inverted_index.K-Nearest | 137 |
| abstract_inverted_index.Neighbor, | 138 |
| abstract_inverted_index.accurate. | 177 |
| abstract_inverted_index.detection | 74 |
| abstract_inverted_index.developed | 192 |
| abstract_inverted_index.diabetes, | 22 |
| abstract_inverted_index.forwarded | 200 |
| abstract_inverted_index.lifestyle | 9 |
| abstract_inverted_index.objective | 100 |
| abstract_inverted_index.schedules | 6 |
| abstract_inverted_index.sedentary | 8 |
| abstract_inverted_index.selecting | 170 |
| abstract_inverted_index.Regression | 152 |
| abstract_inverted_index.accurately | 44 |
| abstract_inverted_index.algorithms | 115, 129, 158 |
| abstract_inverted_index.bearrived. | 71 |
| abstract_inverted_index.evaluation | 147 |
| abstract_inverted_index.prediction | 76, 107 |
| abstract_inverted_index.supervised | 110 |
| abstract_inverted_index.Regression, | 132 |
| abstract_inverted_index.approaches. | 85 |
| abstract_inverted_index.effectively | 54 |
| abstract_inverted_index.suggestions | 206 |
| abstract_inverted_index.precautions. | 208 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.91047874 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |