Diagnostic accuracy of artificial intelligence models for imaging detection of hepatic steatosis through systematic review and meta analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-17386-3
Non-alcoholic fatty liver disease (NAFLD) is an increasingly prevalent chronic liver condition affecting nearly 30% of the global population. Characterized by hepatic steatosis in the absence of significant alcohol intake, NAFLD can progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Although liver biopsy is the diagnostic gold standard, its invasiveness, cost, and associated risks limit widespread application. Artificial intelligence (AI) offers promising non-invasive alternatives by leveraging large datasets to enhance diagnostic precision. To evaluate the diagnostic accuracy of artificialintelligence algorithms for the imaging detection of hepatic steatosis, the essential first step in the metabolic dysfunctionassociated steatotic liver disease (MASLD) spectrum. A comprehensive literature search was conducted across PubMed, Scopus, Embase, Cochrane Library, and Google Scholar for studies published between January 2016 and January 2025. Studies were included if they involved adult populations, employed AI algorithms for NAFLD diagnosis, and reported sufficient diagnostic accuracy measures. Quality assessment was performed using the QUADAS-2 tool. Meta-analysis was conducted using a bivariate random-effects model to estimate pooled sensitivity, specificity, and area under the hierarchical summary receiver operating characteristic (HSROC) curve. Out of 29 studies included in the systematic review, 19 met the criteria for meta-analysis, comprising a total of 344,266 participants. AI-based diagnostic models showed excellent performance, with pooled sensitivity of 91% (95% CI: 84–95%), specificity of 92% (95% CI: 86–96%), and an AUC of 0.97 (95% CI: 0.95–0.98). The diagnostic odds ratio was 123.7, indicating high discriminatory capacity. Convolutional neural networks (CNNs) demonstrated superior accuracy (AUC = 1.00) compared to other AI classifiers. Subgroup analysis revealed higher diagnostic accuracy in studies validated with imaging standards compared to those using liver biopsy. Model performance was also influenced by the type of classifier and validation method used. AI-based models, particularly CNNs, exhibit high diagnostic accuracy for detecting hepatic steatosis and offer promising non-invasive alternatives to traditional modalities. These tools have the potential to transform early detection and screening, especially in resource-limited settings. Future research should focus on external validation, multicentric trials, and standardized reporting for clinical integration.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-17386-3
- https://www.nature.com/articles/s41598-025-17386-3.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 45
- OpenAlex ID
- https://openalex.org/W4414748666
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414748666Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-17386-3Digital Object Identifier
- Title
-
Diagnostic accuracy of artificial intelligence models for imaging detection of hepatic steatosis through systematic review and meta analysisWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-02Full publication date if available
- Authors
-
V Nivethitha, Roy Arokiam Daniel, Aninda Debnath, Vignesh Dwarakanathan, Girish Jeer, G. KavipriyaList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-17386-3Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-17386-3.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-17386-3.pdfDirect OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414748666 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-17386-3 |
| ids.doi | https://doi.org/10.1038/s41598-025-17386-3 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41038934 |
| ids.openalex | https://openalex.org/W4414748666 |
| fwci | 4.6013505 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001185 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Artificial Intelligence |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D065626 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[3].qualifier_ui | Q000175 |
| mesh[3].descriptor_ui | D065626 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnosis |
| mesh[3].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012372 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | ROC Curve |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012680 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Sensitivity and Specificity |
| mesh[7].qualifier_ui | Q000000981 |
| mesh[7].descriptor_ui | D008099 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | diagnostic imaging |
| mesh[7].descriptor_name | Liver |
| mesh[8].qualifier_ui | Q000473 |
| mesh[8].descriptor_ui | D008099 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | pathology |
| mesh[8].descriptor_name | Liver |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001185 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Artificial Intelligence |
| mesh[11].qualifier_ui | Q000000981 |
| mesh[11].descriptor_ui | D065626 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | diagnostic imaging |
| mesh[11].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[12].qualifier_ui | Q000175 |
| mesh[12].descriptor_ui | D065626 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | diagnosis |
| mesh[12].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D012372 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | ROC Curve |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012680 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Sensitivity and Specificity |
| mesh[16].qualifier_ui | Q000000981 |
| mesh[16].descriptor_ui | D008099 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | diagnostic imaging |
| mesh[16].descriptor_name | Liver |
| mesh[17].qualifier_ui | Q000473 |
| mesh[17].descriptor_ui | D008099 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | pathology |
| mesh[17].descriptor_name | Liver |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D001185 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Artificial Intelligence |
| mesh[20].qualifier_ui | Q000000981 |
| mesh[20].descriptor_ui | D065626 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | diagnostic imaging |
| mesh[20].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[21].qualifier_ui | Q000175 |
| mesh[21].descriptor_ui | D065626 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | diagnosis |
| mesh[21].descriptor_name | Non-alcoholic Fatty Liver Disease |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D012372 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | ROC Curve |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D012680 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Sensitivity and Specificity |
| mesh[25].qualifier_ui | Q000000981 |
| mesh[25].descriptor_ui | D008099 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | diagnostic imaging |
| mesh[25].descriptor_name | Liver |
| mesh[26].qualifier_ui | Q000473 |
| mesh[26].descriptor_ui | D008099 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | pathology |
| mesh[26].descriptor_name | Liver |
| type | review |
| title | Diagnostic accuracy of artificial intelligence models for imaging detection of hepatic steatosis through systematic review and meta analysis |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 34408 |
| biblio.first_page | 34408 |
| topics[0].id | https://openalex.org/T10351 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Liver Disease Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10337 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2721 |
| topics[1].subfield.display_name | Hepatology |
| topics[1].display_name | Liver Disease and Transplantation |
| topics[2].id | https://openalex.org/T10073 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2721 |
| topics[2].subfield.display_name | Hepatology |
| topics[2].display_name | Hepatocellular Carcinoma Treatment and Prognosis |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-17386-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-17386-3.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-17386-3 |
| locations[1].id | pmid:41038934 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41038934 |
| locations[2].id | pmh:oai:doaj.org/article:006a90cc48f3496bbbc990ce75bcb647 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-17 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/006a90cc48f3496bbbc990ce75bcb647 |
| locations[3].id | pmh:oai:europepmc.org:11301908 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12491402 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5014611085 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-7992-5980 |
| authorships[0].author.display_name | V Nivethitha |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science Engineering (SCOPE), Vellore Institute of Technology (VIT), Chennai, 600 127, Tamil Nadu, India |
| authorships[0].institutions[0].id | https://openalex.org/I876193797 |
| authorships[0].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | V. Nivethitha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science Engineering (SCOPE), Vellore Institute of Technology (VIT), Chennai, 600 127, Tamil Nadu, India |
| authorships[1].author.id | https://openalex.org/A5067198861 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8124-8160 |
| authorships[1].author.display_name | Roy Arokiam Daniel |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210159729 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Community Medicine, ESIC Medical College and Hospital, KK Nagar, Chennai, 600 078, Tamil Nadu, India |
| authorships[1].institutions[0].id | https://openalex.org/I4210159729 |
| authorships[1].institutions[0].ror | https://ror.org/05k8rth88 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210159729 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | ESIC Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roy Arokiam Daniel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Community Medicine, ESIC Medical College and Hospital, KK Nagar, Chennai, 600 078, Tamil Nadu, India |
| authorships[2].author.id | https://openalex.org/A5011572441 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2117-4195 |
| authorships[2].author.display_name | Aninda Debnath |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I39190216 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Community Medicine, Maulana Azad Medical College, Delhi, India |
| authorships[2].institutions[0].id | https://openalex.org/I39190216 |
| authorships[2].institutions[0].ror | https://ror.org/03dwx1z96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I110166357, https://openalex.org/I39190216 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Maulana Azad Medical College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aninda Debnath |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Community Medicine, Maulana Azad Medical College, Delhi, India |
| authorships[3].author.id | https://openalex.org/A5034177730 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Vignesh Dwarakanathan |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210159729 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Community Medicine, ESIC Medical College and Hospital, KK Nagar, Chennai, 600 078, Tamil Nadu, India |
| authorships[3].institutions[0].id | https://openalex.org/I4210159729 |
| authorships[3].institutions[0].ror | https://ror.org/05k8rth88 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210159729 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | ESIC Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vignesh Dwarakanathan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Community Medicine, ESIC Medical College and Hospital, KK Nagar, Chennai, 600 078, Tamil Nadu, India |
| authorships[4].author.id | https://openalex.org/A5119814618 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Girish Jeer |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I63739035 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Community Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India |
| authorships[4].institutions[0].id | https://openalex.org/I63739035 |
| authorships[4].institutions[0].ror | https://ror.org/02dwcqs71 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799351866, https://openalex.org/I4210148677, https://openalex.org/I63739035 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | All India Institute of Medical Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Girish Jeer |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Community Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India |
| authorships[5].author.id | https://openalex.org/A5083361303 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | G. Kavipriya |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I876193797 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science Engineering (SCOPE), Vellore Institute of Technology (VIT), Chennai, 600 127, Tamil Nadu, India |
| authorships[5].institutions[0].id | https://openalex.org/I876193797 |
| authorships[5].institutions[0].ror | https://ror.org/00qzypv28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I876193797 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Vellore Institute of Technology University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | G. Kavipriya |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science Engineering (SCOPE), Vellore Institute of Technology (VIT), Chennai, 600 127, Tamil Nadu, India |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-17386-3.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diagnostic accuracy of artificial intelligence models for imaging detection of hepatic steatosis through systematic review and meta analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10351 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Liver Disease Diagnosis and Treatment |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-17386-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-17386-3.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-17386-3 |
| primary_location.id | doi:10.1038/s41598-025-17386-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-17386-3.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-17386-3 |
| publication_date | 2025-10-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4283804489, https://openalex.org/W3084467811, https://openalex.org/W3023995809, https://openalex.org/W4290600598, https://openalex.org/W2076355272, https://openalex.org/W3034631925, https://openalex.org/W4385421241, https://openalex.org/W4386222752, https://openalex.org/W3118615836, https://openalex.org/W2107638293, https://openalex.org/W3019350884, https://openalex.org/W1932517565, https://openalex.org/W2622524891, https://openalex.org/W2771771284, https://openalex.org/W2885478230, https://openalex.org/W2907716967, https://openalex.org/W2923781516, https://openalex.org/W2953320409, https://openalex.org/W2972013416, https://openalex.org/W2996678951, https://openalex.org/W3007926128, https://openalex.org/W3035784389, https://openalex.org/W3195319052, https://openalex.org/W3162025211, https://openalex.org/W3193416643, https://openalex.org/W4226022089, https://openalex.org/W3191894747, https://openalex.org/W3115167184, https://openalex.org/W3119207481, https://openalex.org/W3080905241, https://openalex.org/W4225742949, https://openalex.org/W4323049285, https://openalex.org/W4360943408, https://openalex.org/W4361279828, https://openalex.org/W4361005888, https://openalex.org/W4391328219, https://openalex.org/W4399506036, https://openalex.org/W4389560401, https://openalex.org/W2164252555, https://openalex.org/W4205809212, https://openalex.org/W2000641576, https://openalex.org/W4390747939, https://openalex.org/W3208146416, https://openalex.org/W4409320898, https://openalex.org/W4315619045 |
| referenced_works_count | 45 |
| abstract_inverted_index.= | 246 |
| abstract_inverted_index.A | 103 |
| abstract_inverted_index.a | 159, 195 |
| abstract_inverted_index.19 | 188 |
| abstract_inverted_index.29 | 181 |
| abstract_inverted_index.AI | 136, 251 |
| abstract_inverted_index.To | 75 |
| abstract_inverted_index.an | 7, 221 |
| abstract_inverted_index.by | 21, 67, 276 |
| abstract_inverted_index.if | 130 |
| abstract_inverted_index.in | 24, 94, 184, 259, 317 |
| abstract_inverted_index.is | 6, 46 |
| abstract_inverted_index.of | 16, 27, 80, 87, 180, 197, 209, 215, 223, 279 |
| abstract_inverted_index.on | 324 |
| abstract_inverted_index.to | 34, 71, 163, 249, 266, 302, 310 |
| abstract_inverted_index.30% | 15 |
| abstract_inverted_index.91% | 210 |
| abstract_inverted_index.92% | 216 |
| abstract_inverted_index.AUC | 222 |
| abstract_inverted_index.CI: | 212, 218, 226 |
| abstract_inverted_index.Out | 179 |
| abstract_inverted_index.The | 228 |
| abstract_inverted_index.and | 40, 54, 115, 124, 141, 168, 220, 281, 297, 314, 329 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.for | 83, 118, 138, 192, 293, 332 |
| abstract_inverted_index.its | 51 |
| abstract_inverted_index.met | 189 |
| abstract_inverted_index.the | 17, 25, 47, 77, 84, 90, 95, 152, 171, 185, 190, 277, 308 |
| abstract_inverted_index.was | 107, 149, 156, 232, 273 |
| abstract_inverted_index.(95% | 211, 217, 225 |
| abstract_inverted_index.(AI) | 62 |
| abstract_inverted_index.(AUC | 245 |
| abstract_inverted_index.0.97 | 224 |
| abstract_inverted_index.2016 | 123 |
| abstract_inverted_index.also | 274 |
| abstract_inverted_index.area | 169 |
| abstract_inverted_index.gold | 49 |
| abstract_inverted_index.have | 307 |
| abstract_inverted_index.high | 235, 290 |
| abstract_inverted_index.odds | 230 |
| abstract_inverted_index.step | 93 |
| abstract_inverted_index.they | 131 |
| abstract_inverted_index.type | 278 |
| abstract_inverted_index.were | 128 |
| abstract_inverted_index.with | 206, 262 |
| abstract_inverted_index.1.00) | 247 |
| abstract_inverted_index.2025. | 126 |
| abstract_inverted_index.CNNs, | 288 |
| abstract_inverted_index.Model | 271 |
| abstract_inverted_index.NAFLD | 31, 139 |
| abstract_inverted_index.These | 305 |
| abstract_inverted_index.adult | 133 |
| abstract_inverted_index.cost, | 53 |
| abstract_inverted_index.early | 312 |
| abstract_inverted_index.fatty | 2 |
| abstract_inverted_index.first | 92 |
| abstract_inverted_index.focus | 323 |
| abstract_inverted_index.large | 69 |
| abstract_inverted_index.limit | 57 |
| abstract_inverted_index.liver | 3, 11, 44, 99, 269 |
| abstract_inverted_index.model | 162 |
| abstract_inverted_index.offer | 298 |
| abstract_inverted_index.other | 250 |
| abstract_inverted_index.ratio | 231 |
| abstract_inverted_index.risks | 56 |
| abstract_inverted_index.those | 267 |
| abstract_inverted_index.tool. | 154 |
| abstract_inverted_index.tools | 306 |
| abstract_inverted_index.total | 196 |
| abstract_inverted_index.under | 170 |
| abstract_inverted_index.used. | 284 |
| abstract_inverted_index.using | 151, 158, 268 |
| abstract_inverted_index.(CNNs) | 241 |
| abstract_inverted_index.123.7, | 233 |
| abstract_inverted_index.Future | 320 |
| abstract_inverted_index.Google | 116 |
| abstract_inverted_index.across | 109 |
| abstract_inverted_index.biopsy | 45 |
| abstract_inverted_index.curve. | 178 |
| abstract_inverted_index.global | 18 |
| abstract_inverted_index.higher | 256 |
| abstract_inverted_index.method | 283 |
| abstract_inverted_index.models | 202 |
| abstract_inverted_index.nearly | 14 |
| abstract_inverted_index.neural | 239 |
| abstract_inverted_index.offers | 63 |
| abstract_inverted_index.pooled | 165, 207 |
| abstract_inverted_index.search | 106 |
| abstract_inverted_index.should | 322 |
| abstract_inverted_index.showed | 203 |
| abstract_inverted_index.(HSROC) | 177 |
| abstract_inverted_index.(MASLD) | 101 |
| abstract_inverted_index.(NAFLD) | 5 |
| abstract_inverted_index.(NASH), | 37 |
| abstract_inverted_index.344,266 | 198 |
| abstract_inverted_index.Embase, | 112 |
| abstract_inverted_index.January | 122, 125 |
| abstract_inverted_index.PubMed, | 110 |
| abstract_inverted_index.Quality | 147 |
| abstract_inverted_index.Scholar | 117 |
| abstract_inverted_index.Scopus, | 111 |
| abstract_inverted_index.Studies | 127 |
| abstract_inverted_index.absence | 26 |
| abstract_inverted_index.alcohol | 29 |
| abstract_inverted_index.between | 121 |
| abstract_inverted_index.biopsy. | 270 |
| abstract_inverted_index.chronic | 10 |
| abstract_inverted_index.disease | 4, 100 |
| abstract_inverted_index.enhance | 72 |
| abstract_inverted_index.exhibit | 289 |
| abstract_inverted_index.hepatic | 22, 88, 295 |
| abstract_inverted_index.imaging | 85, 263 |
| abstract_inverted_index.intake, | 30 |
| abstract_inverted_index.models, | 286 |
| abstract_inverted_index.review, | 187 |
| abstract_inverted_index.studies | 119, 182, 260 |
| abstract_inverted_index.summary | 173 |
| abstract_inverted_index.trials, | 328 |
| abstract_inverted_index.AI-based | 200, 285 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 43 |
| abstract_inverted_index.Cochrane | 113 |
| abstract_inverted_index.Library, | 114 |
| abstract_inverted_index.QUADAS-2 | 153 |
| abstract_inverted_index.Subgroup | 253 |
| abstract_inverted_index.accuracy | 79, 145, 244, 258, 292 |
| abstract_inverted_index.analysis | 254 |
| abstract_inverted_index.clinical | 333 |
| abstract_inverted_index.compared | 248, 265 |
| abstract_inverted_index.criteria | 191 |
| abstract_inverted_index.datasets | 70 |
| abstract_inverted_index.employed | 135 |
| abstract_inverted_index.estimate | 164 |
| abstract_inverted_index.evaluate | 76 |
| abstract_inverted_index.external | 325 |
| abstract_inverted_index.included | 129, 183 |
| abstract_inverted_index.involved | 132 |
| abstract_inverted_index.networks | 240 |
| abstract_inverted_index.progress | 33 |
| abstract_inverted_index.receiver | 174 |
| abstract_inverted_index.reported | 142 |
| abstract_inverted_index.research | 321 |
| abstract_inverted_index.revealed | 255 |
| abstract_inverted_index.superior | 243 |
| abstract_inverted_index.affecting | 13 |
| abstract_inverted_index.bivariate | 160 |
| abstract_inverted_index.capacity. | 237 |
| abstract_inverted_index.condition | 12 |
| abstract_inverted_index.conducted | 108, 157 |
| abstract_inverted_index.detecting | 294 |
| abstract_inverted_index.detection | 86, 313 |
| abstract_inverted_index.essential | 91 |
| abstract_inverted_index.excellent | 204 |
| abstract_inverted_index.fibrosis, | 38 |
| abstract_inverted_index.measures. | 146 |
| abstract_inverted_index.metabolic | 96 |
| abstract_inverted_index.operating | 175 |
| abstract_inverted_index.performed | 150 |
| abstract_inverted_index.potential | 309 |
| abstract_inverted_index.prevalent | 9 |
| abstract_inverted_index.promising | 64, 299 |
| abstract_inverted_index.published | 120 |
| abstract_inverted_index.reporting | 331 |
| abstract_inverted_index.settings. | 319 |
| abstract_inverted_index.spectrum. | 102 |
| abstract_inverted_index.standard, | 50 |
| abstract_inverted_index.standards | 264 |
| abstract_inverted_index.steatosis | 23, 296 |
| abstract_inverted_index.steatotic | 98 |
| abstract_inverted_index.transform | 311 |
| abstract_inverted_index.validated | 261 |
| abstract_inverted_index.84–95%), | 213 |
| abstract_inverted_index.86–96%), | 219 |
| abstract_inverted_index.Artificial | 60 |
| abstract_inverted_index.algorithms | 82, 137 |
| abstract_inverted_index.assessment | 148 |
| abstract_inverted_index.associated | 55 |
| abstract_inverted_index.carcinoma. | 42 |
| abstract_inverted_index.cirrhosis, | 39 |
| abstract_inverted_index.classifier | 280 |
| abstract_inverted_index.comprising | 194 |
| abstract_inverted_index.diagnosis, | 140 |
| abstract_inverted_index.diagnostic | 48, 73, 78, 144, 201, 229, 257, 291 |
| abstract_inverted_index.especially | 316 |
| abstract_inverted_index.indicating | 234 |
| abstract_inverted_index.influenced | 275 |
| abstract_inverted_index.leveraging | 68 |
| abstract_inverted_index.literature | 105 |
| abstract_inverted_index.precision. | 74 |
| abstract_inverted_index.screening, | 315 |
| abstract_inverted_index.steatosis, | 89 |
| abstract_inverted_index.sufficient | 143 |
| abstract_inverted_index.systematic | 186 |
| abstract_inverted_index.validation | 282 |
| abstract_inverted_index.widespread | 58 |
| abstract_inverted_index.modalities. | 304 |
| abstract_inverted_index.performance | 272 |
| abstract_inverted_index.population. | 19 |
| abstract_inverted_index.sensitivity | 208 |
| abstract_inverted_index.significant | 28 |
| abstract_inverted_index.specificity | 214 |
| abstract_inverted_index.traditional | 303 |
| abstract_inverted_index.validation, | 326 |
| abstract_inverted_index.alternatives | 66, 301 |
| abstract_inverted_index.application. | 59 |
| abstract_inverted_index.classifiers. | 252 |
| abstract_inverted_index.demonstrated | 242 |
| abstract_inverted_index.hierarchical | 172 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.integration. | 334 |
| abstract_inverted_index.intelligence | 61 |
| abstract_inverted_index.multicentric | 327 |
| abstract_inverted_index.non-invasive | 65, 300 |
| abstract_inverted_index.particularly | 287 |
| abstract_inverted_index.performance, | 205 |
| abstract_inverted_index.populations, | 134 |
| abstract_inverted_index.sensitivity, | 166 |
| abstract_inverted_index.specificity, | 167 |
| abstract_inverted_index.standardized | 330 |
| abstract_inverted_index.0.95–0.98). | 227 |
| abstract_inverted_index.Characterized | 20 |
| abstract_inverted_index.Convolutional | 238 |
| abstract_inverted_index.Meta-analysis | 155 |
| abstract_inverted_index.Non-alcoholic | 1 |
| abstract_inverted_index.comprehensive | 104 |
| abstract_inverted_index.invasiveness, | 52 |
| abstract_inverted_index.non-alcoholic | 35 |
| abstract_inverted_index.participants. | 199 |
| abstract_inverted_index.characteristic | 176 |
| abstract_inverted_index.discriminatory | 236 |
| abstract_inverted_index.hepatocellular | 41 |
| abstract_inverted_index.meta-analysis, | 193 |
| abstract_inverted_index.random-effects | 161 |
| abstract_inverted_index.steatohepatitis | 36 |
| abstract_inverted_index.resource-limited | 318 |
| abstract_inverted_index.dysfunctionassociated | 97 |
| abstract_inverted_index.artificialintelligence | 81 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.91072222 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |