Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3934/math.2024198
In the framework of generalized linear models (GLM), this paper explores the design and applicability of partial residual (PRES), augmented partial residual (APRES), and conditional expectation and residuals (CERES) plots for visualizing an outlier's diagnostics as a function of selected variables. Here, a geometric regression as a GLM is thoroughly described. Additionally, plots for PRES, APRES, and CERES have been built. Due to how the response variable and the associated link function interact with various covariates, the effectiveness of these plots for creating an appealing visual impression may vary. On the cervical cancer data, specific methodologies are used to identify trends for effective modelling. When compared to other approaches, the power of the tests for various plots demonstrates that PRES, CERES (L) and CERES (K) have the greatest endurance for the outlier's diagnostics. On the basis of the power of residual plots, the use is recommended for outlier diagnostics in presence of conventional tests.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3934/math.2024198
- OA Status
- gold
- Cited By
- 2
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390839652
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390839652Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3934/math.2024198Digital Object Identifier
- Title
-
Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Zawar Hussain, Atif Akbar, Mohammed M. A. Almazah, A. Y. Al-Rezami, Fuad S. AlduaisList of authors in order
- Landing page
-
https://doi.org/10.3934/math.2024198Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3934/math.2024198Direct OA link when available
- Concepts
-
Outlier, Residual, Generalized linear model, Covariate, Linear regression, Statistics, Regression analysis, Regression, Mathematics, Computer science, Data mining, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390839652 |
|---|---|
| doi | https://doi.org/10.3934/math.2024198 |
| ids.doi | https://doi.org/10.3934/math.2024198 |
| ids.openalex | https://openalex.org/W4390839652 |
| fwci | 3.06580092 |
| type | article |
| title | Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data |
| biblio.issue | 2 |
| biblio.volume | 9 |
| biblio.last_page | 4075 |
| biblio.first_page | 4057 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T12417 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Morphological variations and asymmetry |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9771000146865845 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list.value | 1200 |
| apc_list.currency | USD |
| apc_list.value_usd | 1200 |
| apc_paid.value | 1200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1200 |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8341196775436401 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C155512373 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7706092596054077 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[1].display_name | Residual |
| concepts[2].id | https://openalex.org/C41587187 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6727198362350464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[2].display_name | Generalized linear model |
| concepts[3].id | https://openalex.org/C119043178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6056589484214783 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[3].display_name | Covariate |
| concepts[4].id | https://openalex.org/C48921125 |
| concepts[4].level | 2 |
| concepts[4].score | 0.52909255027771 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[4].display_name | Linear regression |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5117545127868652 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C152877465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4860127866268158 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[6].display_name | Regression analysis |
| concepts[7].id | https://openalex.org/C83546350 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4751969575881958 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[7].display_name | Regression |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4618932008743286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.40668985247612 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3729979991912842 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22338354587554932 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.8341196775436401 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/residual |
| keywords[1].score | 0.7706092596054077 |
| keywords[1].display_name | Residual |
| keywords[2].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[2].score | 0.6727198362350464 |
| keywords[2].display_name | Generalized linear model |
| keywords[3].id | https://openalex.org/keywords/covariate |
| keywords[3].score | 0.6056589484214783 |
| keywords[3].display_name | Covariate |
| keywords[4].id | https://openalex.org/keywords/linear-regression |
| keywords[4].score | 0.52909255027771 |
| keywords[4].display_name | Linear regression |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.5117545127868652 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/regression-analysis |
| keywords[6].score | 0.4860127866268158 |
| keywords[6].display_name | Regression analysis |
| keywords[7].id | https://openalex.org/keywords/regression |
| keywords[7].score | 0.4751969575881958 |
| keywords[7].display_name | Regression |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4618932008743286 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.40668985247612 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3729979991912842 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.22338354587554932 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.3934/math.2024198 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179087 |
| locations[0].source.issn | 2473-6988 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2473-6988 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIMS Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_name | American Institute of Mathematical Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315844 |
| locations[0].source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIMS Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3934/math.2024198 |
| locations[1].id | pmh:oai:doaj.org/article:f00377e0ffaa43f6a47eed205e80dc03 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIMS Mathematics, Vol 9, Iss 2, Pp 4057-4075 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f00377e0ffaa43f6a47eed205e80dc03 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100626825 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5109-3652 |
| authorships[0].author.display_name | Zawar Hussain |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210096473 |
| authorships[0].affiliations[0].raw_affiliation_string | Govt Millat Graduate College Multan, Pakistan, 60800 |
| authorships[0].institutions[0].id | https://openalex.org/I4210096473 |
| authorships[0].institutions[0].ror | https://ror.org/00vmr6593 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210096473 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | Muhammad Nawaz Shareef University of Agriculture |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zawar Hussain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Govt Millat Graduate College Multan, Pakistan, 60800 |
| authorships[1].author.id | https://openalex.org/A5061509573 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3227-9731 |
| authorships[1].author.display_name | Atif Akbar |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I127670440 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan, 60800 |
| authorships[1].institutions[0].id | https://openalex.org/I127670440 |
| authorships[1].institutions[0].ror | https://ror.org/05x817c41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I127670440 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Bahauddin Zakariya University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Atif Akbar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan, 60800 |
| authorships[2].author.id | https://openalex.org/A5001743109 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8427-8760 |
| authorships[2].author.display_name | Mohammed M. A. Almazah |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82952536 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, 61421, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I82952536 |
| authorships[2].institutions[0].ror | https://ror.org/052kwzs30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82952536 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Khalid University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammed M. A. Almazah |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, 61421, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5111292376 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | A. Y. Al-Rezami |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[3].affiliations[0].raw_affiliation_string | Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I142608572 |
| authorships[3].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | A. Y. Al-Rezami |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5009704579 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2255-1167 |
| authorships[4].author.display_name | Fuad S. Alduais |
| authorships[4].countries | PK, SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[4].affiliations[0].raw_affiliation_string | Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I82952536 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, 61421, Saudi Arabia |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210096473 |
| authorships[4].affiliations[2].raw_affiliation_string | Govt Millat Graduate College Multan, Pakistan, 60800 |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I127670440 |
| authorships[4].affiliations[3].raw_affiliation_string | Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan, 60800 |
| authorships[4].institutions[0].id | https://openalex.org/I127670440 |
| authorships[4].institutions[0].ror | https://ror.org/05x817c41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I127670440 |
| authorships[4].institutions[0].country_code | PK |
| authorships[4].institutions[0].display_name | Bahauddin Zakariya University |
| authorships[4].institutions[1].id | https://openalex.org/I4210096473 |
| authorships[4].institutions[1].ror | https://ror.org/00vmr6593 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210096473 |
| authorships[4].institutions[1].country_code | PK |
| authorships[4].institutions[1].display_name | Muhammad Nawaz Shareef University of Agriculture |
| authorships[4].institutions[2].id | https://openalex.org/I82952536 |
| authorships[4].institutions[2].ror | https://ror.org/052kwzs30 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I82952536 |
| authorships[4].institutions[2].country_code | SA |
| authorships[4].institutions[2].display_name | King Khalid University |
| authorships[4].institutions[3].id | https://openalex.org/I142608572 |
| authorships[4].institutions[3].ror | https://ror.org/04jt46d36 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I142608572 |
| authorships[4].institutions[3].country_code | SA |
| authorships[4].institutions[3].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fuad S. Al-Duais |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil, 61421, Saudi Arabia, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan, 60800, Govt Millat Graduate College Multan, Pakistan, 60800, Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, 16278, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3934/math.2024198 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2985746494, https://openalex.org/W4206042385, https://openalex.org/W2511384863, https://openalex.org/W2080773131, https://openalex.org/W4311044804, https://openalex.org/W31220157, https://openalex.org/W2288557197, https://openalex.org/W4233024177, https://openalex.org/W2101914902, https://openalex.org/W3174613421 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3934/math.2024198 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179087 |
| best_oa_location.source.issn | 2473-6988 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2473-6988 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIMS Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_name | American Institute of Mathematical Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIMS Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3934/math.2024198 |
| primary_location.id | doi:10.3934/math.2024198 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179087 |
| primary_location.source.issn | 2473-6988 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2473-6988 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIMS Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_name | American Institute of Mathematical Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315844 |
| primary_location.source.host_organization_lineage_names | American Institute of Mathematical Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIMS Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3934/math.2024198 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2937591588, https://openalex.org/W30139279, https://openalex.org/W1992512059, https://openalex.org/W658226834, https://openalex.org/W2331936027, https://openalex.org/W2041655977, https://openalex.org/W1996467877, https://openalex.org/W2905045036, https://openalex.org/W2079548739, https://openalex.org/W2465300917, https://openalex.org/W2145028267, https://openalex.org/W3166195174, https://openalex.org/W3132630954, https://openalex.org/W2474104803, https://openalex.org/W4206484395, https://openalex.org/W2806348078, https://openalex.org/W2790490485, https://openalex.org/W2789832252, https://openalex.org/W2093281118, https://openalex.org/W2087905060, https://openalex.org/W3088049267, https://openalex.org/W4213444911, https://openalex.org/W2057765245, https://openalex.org/W79625473 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 37, 43, 47 |
| abstract_inverted_index.On | 90, 134 |
| abstract_inverted_index.an | 33, 84 |
| abstract_inverted_index.as | 36, 46 |
| abstract_inverted_index.in | 150 |
| abstract_inverted_index.is | 49, 145 |
| abstract_inverted_index.of | 4, 16, 39, 79, 112, 137, 140, 152 |
| abstract_inverted_index.to | 63, 99, 107 |
| abstract_inverted_index.(K) | 125 |
| abstract_inverted_index.(L) | 122 |
| abstract_inverted_index.Due | 62 |
| abstract_inverted_index.GLM | 48 |
| abstract_inverted_index.and | 14, 24, 27, 57, 68, 123 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.for | 31, 54, 82, 102, 115, 130, 147 |
| abstract_inverted_index.how | 64 |
| abstract_inverted_index.may | 88 |
| abstract_inverted_index.the | 2, 12, 65, 69, 77, 91, 110, 113, 127, 131, 135, 138, 143 |
| abstract_inverted_index.use | 144 |
| abstract_inverted_index.When | 105 |
| abstract_inverted_index.been | 60 |
| abstract_inverted_index.have | 59, 126 |
| abstract_inverted_index.link | 71 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.this | 9 |
| abstract_inverted_index.used | 98 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.CERES | 58, 121, 124 |
| abstract_inverted_index.Here, | 42 |
| abstract_inverted_index.PRES, | 55, 120 |
| abstract_inverted_index.basis | 136 |
| abstract_inverted_index.data, | 94 |
| abstract_inverted_index.other | 108 |
| abstract_inverted_index.paper | 10 |
| abstract_inverted_index.plots | 30, 53, 81, 117 |
| abstract_inverted_index.power | 111, 139 |
| abstract_inverted_index.tests | 114 |
| abstract_inverted_index.these | 80 |
| abstract_inverted_index.vary. | 89 |
| abstract_inverted_index.(GLM), | 8 |
| abstract_inverted_index.APRES, | 56 |
| abstract_inverted_index.built. | 61 |
| abstract_inverted_index.cancer | 93 |
| abstract_inverted_index.design | 13 |
| abstract_inverted_index.linear | 6 |
| abstract_inverted_index.models | 7 |
| abstract_inverted_index.plots, | 142 |
| abstract_inverted_index.trends | 101 |
| abstract_inverted_index.visual | 86 |
| abstract_inverted_index.(CERES) | 29 |
| abstract_inverted_index.(PRES), | 19 |
| abstract_inverted_index.outlier | 148 |
| abstract_inverted_index.partial | 17, 21 |
| abstract_inverted_index.various | 75, 116 |
| abstract_inverted_index.(APRES), | 23 |
| abstract_inverted_index.cervical | 92 |
| abstract_inverted_index.compared | 106 |
| abstract_inverted_index.creating | 83 |
| abstract_inverted_index.explores | 11 |
| abstract_inverted_index.function | 38, 72 |
| abstract_inverted_index.greatest | 128 |
| abstract_inverted_index.identify | 100 |
| abstract_inverted_index.interact | 73 |
| abstract_inverted_index.presence | 151 |
| abstract_inverted_index.residual | 18, 22, 141 |
| abstract_inverted_index.response | 66 |
| abstract_inverted_index.selected | 40 |
| abstract_inverted_index.specific | 95 |
| abstract_inverted_index.variable | 67 |
| abstract_inverted_index.appealing | 85 |
| abstract_inverted_index.augmented | 20 |
| abstract_inverted_index.effective | 103 |
| abstract_inverted_index.endurance | 129 |
| abstract_inverted_index.framework | 3 |
| abstract_inverted_index.geometric | 44 |
| abstract_inverted_index.outlier's | 34, 132 |
| abstract_inverted_index.residuals | 28 |
| abstract_inverted_index.associated | 70 |
| abstract_inverted_index.described. | 51 |
| abstract_inverted_index.impression | 87 |
| abstract_inverted_index.modelling. | 104 |
| abstract_inverted_index.regression | 45 |
| abstract_inverted_index.thoroughly | 50 |
| abstract_inverted_index.variables. | 41 |
| abstract_inverted_index.<p>In | 1 |
| abstract_inverted_index.approaches, | 109 |
| abstract_inverted_index.conditional | 25 |
| abstract_inverted_index.covariates, | 76 |
| abstract_inverted_index.diagnostics | 35, 149 |
| abstract_inverted_index.expectation | 26 |
| abstract_inverted_index.generalized | 5 |
| abstract_inverted_index.recommended | 146 |
| abstract_inverted_index.visualizing | 32 |
| abstract_inverted_index.conventional | 153 |
| abstract_inverted_index.demonstrates | 118 |
| abstract_inverted_index.diagnostics. | 133 |
| abstract_inverted_index.Additionally, | 52 |
| abstract_inverted_index.applicability | 15 |
| abstract_inverted_index.effectiveness | 78 |
| abstract_inverted_index.methodologies | 96 |
| abstract_inverted_index.<abstract> | 0 |
| abstract_inverted_index.tests.</p> | 154 |
| abstract_inverted_index.</abstract> | 155 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5009704579 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I127670440, https://openalex.org/I142608572, https://openalex.org/I4210096473, https://openalex.org/I82952536 |
| citation_normalized_percentile.value | 0.82184104 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |