Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.11982
Let $D_λ^{d,k}$ denote the family of diagonal hypersurface over a finite field $\mathbb{F}_q$ given by \begin{align*} D_λ^{d,k}:X_1^d+X_2^d=λdX_1^kx_2^{d-k}, \end{align*} where $d\geq2$, $1\leq k\leq d-1$, and $\gcd(d,k)=1$. Let $\#D^{d,k}_λ$ denote the number of points on $D_λ^{d,k}$ in $\mathbb{P}^{1}(\mathbb{F}_q)$. It is easy to see that $\#D_λ^{d,k}$ is equal to the number of distinct zeros of the polynomial $y^d-dλy^k+1\in \mathbb{F}_q[y]$ in $\mathbb{F}_q$. In this article, we prove that $\#D^{d,k}_λ$ is also equal to the number of distinct zeros of the polynomial $y^{d-k}(1-y)^k-(dλ)^{-d}$ in $\mathbb{F}_q$. We express the number of distinct zeros of the polynomial $y^{d-k}(1-y)^k-(dλ)^{-d}$ in terms of a $p$-adic hypergeometric function. Next, we derive summation identities for the $p$-adic hypergeometric functions appearing in the expressions for $\#D^{d,k}_λ$. Finally, as an application of the summation identities, we prove identities for the trace of Frobenius endomorphism on certain families of elliptic curves.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.11982
- https://arxiv.org/pdf/2307.11982
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385245489
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385245489Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.11982Digital Object Identifier
- Title
-
Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-22Full publication date if available
- Authors
-
Sulakashna, Rupam BarmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.11982Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.11982Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.11982Direct OA link when available
- Concepts
-
Lambda, Hypergeometric function, Mathematics, Polynomial, Combinatorics, Diagonal, Finite field, Hypersurface, Physics, Mathematical analysis, Geometry, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385245489 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.11982 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.11982 |
| ids.openalex | https://openalex.org/W4385245489 |
| fwci | |
| type | preprint |
| title | Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10061 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9947999715805054 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Algebraic Geometry and Number Theory |
| topics[1].id | https://openalex.org/T11680 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9850999712944031 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Advanced Algebra and Geometry |
| topics[2].id | https://openalex.org/T11130 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9732999801635742 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Coding theory and cryptography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778113609 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6785923838615417 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10897 |
| concepts[0].display_name | Lambda |
| concepts[1].id | https://openalex.org/C197320386 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6281425952911377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21028472 |
| concepts[1].display_name | Hypergeometric function |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5859405994415283 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C90119067 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5669291019439697 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q43260 |
| concepts[3].display_name | Polynomial |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5586171746253967 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| concepts[5].id | https://openalex.org/C130367717 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4757221043109894 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189791 |
| concepts[5].display_name | Diagonal |
| concepts[6].id | https://openalex.org/C77926391 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45262712240219116 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q603880 |
| concepts[6].display_name | Finite field |
| concepts[7].id | https://openalex.org/C114410712 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43409788608551025 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q973321 |
| concepts[7].display_name | Hypersurface |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2542340159416199 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.22226032614707947 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16932794451713562 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/lambda |
| keywords[0].score | 0.6785923838615417 |
| keywords[0].display_name | Lambda |
| keywords[1].id | https://openalex.org/keywords/hypergeometric-function |
| keywords[1].score | 0.6281425952911377 |
| keywords[1].display_name | Hypergeometric function |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.5859405994415283 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/polynomial |
| keywords[3].score | 0.5669291019439697 |
| keywords[3].display_name | Polynomial |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.5586171746253967 |
| keywords[4].display_name | Combinatorics |
| keywords[5].id | https://openalex.org/keywords/diagonal |
| keywords[5].score | 0.4757221043109894 |
| keywords[5].display_name | Diagonal |
| keywords[6].id | https://openalex.org/keywords/finite-field |
| keywords[6].score | 0.45262712240219116 |
| keywords[6].display_name | Finite field |
| keywords[7].id | https://openalex.org/keywords/hypersurface |
| keywords[7].score | 0.43409788608551025 |
| keywords[7].display_name | Hypersurface |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.2542340159416199 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[9].score | 0.22226032614707947 |
| keywords[9].display_name | Mathematical analysis |
| keywords[10].id | https://openalex.org/keywords/geometry |
| keywords[10].score | 0.16932794451713562 |
| keywords[10].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.11982 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.11982 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.11982 |
| locations[1].id | doi:10.48550/arxiv.2307.11982 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.11982 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038319633 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sulakashna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sulakashna |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047126432 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4480-1788 |
| authorships[1].author.display_name | Rupam Barman |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Barman, Rupam |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.11982 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-26T00:00:00 |
| display_name | Diagonal hypersurfaces and elliptic curves over finite fields and hypergeometric functions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10061 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9947999715805054 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Algebraic Geometry and Number Theory |
| related_works | https://openalex.org/W834447687, https://openalex.org/W2950325999, https://openalex.org/W2040382607, https://openalex.org/W2154734935, https://openalex.org/W2952832090, https://openalex.org/W2121611394, https://openalex.org/W4239786835, https://openalex.org/W2024906426, https://openalex.org/W3169636211, https://openalex.org/W2014894837 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.11982 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.11982 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.11982 |
| primary_location.id | pmh:oai:arXiv.org:2307.11982 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.11982 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.11982 |
| publication_date | 2023-07-22 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 94 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.It | 36 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 116 |
| abstract_inverted_index.as | 115 |
| abstract_inverted_index.by | 14 |
| abstract_inverted_index.in | 34, 56, 78, 91, 109 |
| abstract_inverted_index.is | 37, 43, 65 |
| abstract_inverted_index.of | 5, 30, 48, 51, 71, 74, 84, 87, 93, 118, 128, 134 |
| abstract_inverted_index.on | 32, 131 |
| abstract_inverted_index.to | 39, 45, 68 |
| abstract_inverted_index.we | 61, 99, 122 |
| abstract_inverted_index.Let | 0, 25 |
| abstract_inverted_index.and | 23 |
| abstract_inverted_index.for | 103, 112, 125 |
| abstract_inverted_index.see | 40 |
| abstract_inverted_index.the | 3, 28, 46, 52, 69, 75, 82, 88, 104, 110, 119, 126 |
| abstract_inverted_index.also | 66 |
| abstract_inverted_index.easy | 38 |
| abstract_inverted_index.over | 8 |
| abstract_inverted_index.that | 41, 63 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.Next, | 98 |
| abstract_inverted_index.d-1$, | 22 |
| abstract_inverted_index.equal | 44, 67 |
| abstract_inverted_index.field | 11 |
| abstract_inverted_index.given | 13 |
| abstract_inverted_index.k\leq | 21 |
| abstract_inverted_index.prove | 62, 123 |
| abstract_inverted_index.terms | 92 |
| abstract_inverted_index.trace | 127 |
| abstract_inverted_index.where | 18 |
| abstract_inverted_index.zeros | 50, 73, 86 |
| abstract_inverted_index.$1\leq | 20 |
| abstract_inverted_index.denote | 2, 27 |
| abstract_inverted_index.derive | 100 |
| abstract_inverted_index.family | 4 |
| abstract_inverted_index.finite | 10 |
| abstract_inverted_index.number | 29, 47, 70, 83 |
| abstract_inverted_index.points | 31 |
| abstract_inverted_index.certain | 132 |
| abstract_inverted_index.curves. | 136 |
| abstract_inverted_index.express | 81 |
| abstract_inverted_index.$p$-adic | 95, 105 |
| abstract_inverted_index.Finally, | 114 |
| abstract_inverted_index.article, | 60 |
| abstract_inverted_index.diagonal | 6 |
| abstract_inverted_index.distinct | 49, 72, 85 |
| abstract_inverted_index.elliptic | 135 |
| abstract_inverted_index.families | 133 |
| abstract_inverted_index.$d\geq2$, | 19 |
| abstract_inverted_index.Frobenius | 129 |
| abstract_inverted_index.appearing | 108 |
| abstract_inverted_index.function. | 97 |
| abstract_inverted_index.functions | 107 |
| abstract_inverted_index.summation | 101, 120 |
| abstract_inverted_index.identities | 102, 124 |
| abstract_inverted_index.polynomial | 53, 76, 89 |
| abstract_inverted_index.application | 117 |
| abstract_inverted_index.expressions | 111 |
| abstract_inverted_index.identities, | 121 |
| abstract_inverted_index.$D_λ^{d,k}$ | 1, 33 |
| abstract_inverted_index.\end{align*} | 17 |
| abstract_inverted_index.endomorphism | 130 |
| abstract_inverted_index.hypersurface | 7 |
| abstract_inverted_index.$\#D^{d,k}_λ$ | 26, 64 |
| abstract_inverted_index.$\#D_λ^{d,k}$ | 42 |
| abstract_inverted_index.$\gcd(d,k)=1$. | 24 |
| abstract_inverted_index.$\mathbb{F}_q$ | 12 |
| abstract_inverted_index.\begin{align*} | 15 |
| abstract_inverted_index.hypergeometric | 96, 106 |
| abstract_inverted_index.$\#D^{d,k}_λ$. | 113 |
| abstract_inverted_index.$\mathbb{F}_q$. | 57, 79 |
| abstract_inverted_index.$y^d-dλy^k+1\in | 54 |
| abstract_inverted_index.\mathbb{F}_q[y]$ | 55 |
| abstract_inverted_index.$y^{d-k}(1-y)^k-(dλ)^{-d}$ | 77, 90 |
| abstract_inverted_index.$\mathbb{P}^{1}(\mathbb{F}_q)$. | 35 |
| abstract_inverted_index.D_λ^{d,k}:X_1^d+X_2^d=λdX_1^kx_2^{d-k}, | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |