DialFRED: Dialogue-Enabled Agents for Embodied Instruction Following Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/lra.2022.3193254
Language-guided Embodied AI benchmarks requiring an agent to navigate an environment and manipulate objects typically allow one-way communication: the human user gives a natural language command to the agent, and the agent can only follow the command passively. We present DialFRED, a dialogue-enabled embodied instruction following benchmark based on the ALFRED benchmark. DialFRED allows an agent to actively ask questions to the human user; the additional information in the user's response is used by the agent to better complete its task. We release a human-annotated dataset with 53K task-relevant questions and answers and an oracle to answer questions. To solve DialFRED, we propose a questioner-performer framework wherein the questioner is pre-trained with the human-annotated data and fine-tuned with reinforcement learning. We make DialFRED publicly available and encourage researchers to propose and evaluate their solutions to building dialog-enabled embodied agents.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/lra.2022.3193254
- OA Status
- green
- Cited By
- 37
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225675121
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225675121Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lra.2022.3193254Digital Object Identifier
- Title
-
DialFRED: Dialogue-Enabled Agents for Embodied Instruction FollowingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-22Full publication date if available
- Authors
-
Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, Gaurav S. SukhatmeList of authors in order
- Landing page
-
https://doi.org/10.1109/lra.2022.3193254Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.13330Direct OA link when available
- Concepts
-
Embodied cognition, Computer science, Dialog system, Dialog box, Embodied agent, Task (project management), Oracle, Benchmark (surveying), Human–computer interaction, Ask price, Artificial intelligence, World Wide Web, Programming language, Engineering, Economics, Systems engineering, Economy, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 6, 2023: 18, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225675121 |
|---|---|
| doi | https://doi.org/10.1109/lra.2022.3193254 |
| ids.doi | https://doi.org/10.1109/lra.2022.3193254 |
| ids.openalex | https://openalex.org/W4225675121 |
| fwci | 4.58029664 |
| type | article |
| title | DialFRED: Dialogue-Enabled Agents for Embodied Instruction Following |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 10056 |
| biblio.first_page | 10049 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T12031 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9993000030517578 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech and dialogue systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C100609095 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8910129070281982 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1335050 |
| concepts[0].display_name | Embodied cognition |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.797324538230896 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C190954187 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7766790390014648 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5270587 |
| concepts[2].display_name | Dialog system |
| concepts[3].id | https://openalex.org/C173853756 |
| concepts[3].level | 2 |
| concepts[3].score | 0.745539128780365 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q86915 |
| concepts[3].display_name | Dialog box |
| concepts[4].id | https://openalex.org/C103683099 |
| concepts[4].level | 3 |
| concepts[4].score | 0.7353713512420654 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5370102 |
| concepts[4].display_name | Embodied agent |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.7083006501197815 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C55166926 |
| concepts[6].level | 2 |
| concepts[6].score | 0.7079328298568726 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2892946 |
| concepts[6].display_name | Oracle |
| concepts[7].id | https://openalex.org/C185798385 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6254130601882935 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[7].display_name | Benchmark (surveying) |
| concepts[8].id | https://openalex.org/C107457646 |
| concepts[8].level | 1 |
| concepts[8].score | 0.6095940470695496 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[8].display_name | Human–computer interaction |
| concepts[9].id | https://openalex.org/C90329073 |
| concepts[9].level | 2 |
| concepts[9].score | 0.6053648591041565 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q914232 |
| concepts[9].display_name | Ask price |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3844735324382782 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C136764020 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22566980123519897 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[11].display_name | World Wide Web |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.12378442287445068 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08058342337608337 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C201995342 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[15].display_name | Systems engineering |
| concepts[16].id | https://openalex.org/C136264566 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q159810 |
| concepts[16].display_name | Economy |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C13280743 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[18].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/embodied-cognition |
| keywords[0].score | 0.8910129070281982 |
| keywords[0].display_name | Embodied cognition |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.797324538230896 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dialog-system |
| keywords[2].score | 0.7766790390014648 |
| keywords[2].display_name | Dialog system |
| keywords[3].id | https://openalex.org/keywords/dialog-box |
| keywords[3].score | 0.745539128780365 |
| keywords[3].display_name | Dialog box |
| keywords[4].id | https://openalex.org/keywords/embodied-agent |
| keywords[4].score | 0.7353713512420654 |
| keywords[4].display_name | Embodied agent |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.7083006501197815 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/oracle |
| keywords[6].score | 0.7079328298568726 |
| keywords[6].display_name | Oracle |
| keywords[7].id | https://openalex.org/keywords/benchmark |
| keywords[7].score | 0.6254130601882935 |
| keywords[7].display_name | Benchmark (surveying) |
| keywords[8].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[8].score | 0.6095940470695496 |
| keywords[8].display_name | Human–computer interaction |
| keywords[9].id | https://openalex.org/keywords/ask-price |
| keywords[9].score | 0.6053648591041565 |
| keywords[9].display_name | Ask price |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3844735324382782 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/world-wide-web |
| keywords[11].score | 0.22566980123519897 |
| keywords[11].display_name | World Wide Web |
| keywords[12].id | https://openalex.org/keywords/programming-language |
| keywords[12].score | 0.12378442287445068 |
| keywords[12].display_name | Programming language |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.08058342337608337 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1109/lra.2022.3193254 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210169774 |
| locations[0].source.issn | 2377-3766 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2377-3766 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Robotics and Automation Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Robotics and Automation Letters |
| locations[0].landing_page_url | https://doi.org/10.1109/lra.2022.3193254 |
| locations[1].id | pmh:oai:arXiv.org:2202.13330 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2202.13330 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2202.13330 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5023073132 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3331-9846 |
| authorships[0].author.display_name | Xiaofeng Gao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaofeng Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA, USA |
| authorships[1].author.id | https://openalex.org/A5077622605 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5403-0796 |
| authorships[1].author.display_name | Qiaozi Gao |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[1].affiliations[0].raw_affiliation_string | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Amazon (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qiaozi Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[2].author.id | https://openalex.org/A5029010405 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-9365-9143 |
| authorships[2].author.display_name | Ran Gong |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ran Gong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA, USA |
| authorships[3].author.id | https://openalex.org/A5100443077 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8626-8934 |
| authorships[3].author.display_name | Kaixiang Lin |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[3].affiliations[0].raw_affiliation_string | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[3].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Amazon (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kaixiang Lin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[4].author.id | https://openalex.org/A5088771920 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-1010-8896 |
| authorships[4].author.display_name | Govind Thattai |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[4].affiliations[0].raw_affiliation_string | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[4].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Amazon (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Govind Thattai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[5].author.id | https://openalex.org/A5077367921 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2408-474X |
| authorships[5].author.display_name | Gaurav S. Sukhatme |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1311688040 |
| authorships[5].affiliations[0].raw_affiliation_string | Amazon, Alexa AI, Sunnyvale, CA, USA |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I144571360 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1311688040 |
| authorships[5].institutions[0].ror | https://ror.org/04mv4n011 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1311688040 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Amazon (United States) |
| authorships[5].institutions[1].id | https://openalex.org/I144571360 |
| authorships[5].institutions[1].ror | https://ror.org/039p8pn96 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I144571360 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Viterbo University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Gaurav S. Sukhatme |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Amazon, Alexa AI, Sunnyvale, CA, USA, Department of Computer Science, USC Viterbi School of Engineering, Los Angeles, CA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.13330 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DialFRED: Dialogue-Enabled Agents for Embodied Instruction Following |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2500779211, https://openalex.org/W48079147, https://openalex.org/W1963944933, https://openalex.org/W2563921006, https://openalex.org/W1600043506, https://openalex.org/W2111550420, https://openalex.org/W2549666521, https://openalex.org/W3133893348, https://openalex.org/W2920931047, https://openalex.org/W1977846844 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 18 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.13330 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.13330 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.13330 |
| primary_location.id | doi:10.1109/lra.2022.3193254 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210169774 |
| primary_location.source.issn | 2377-3766 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2377-3766 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Robotics and Automation Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Robotics and Automation Letters |
| primary_location.landing_page_url | https://doi.org/10.1109/lra.2022.3193254 |
| publication_date | 2022-07-22 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2963800628, https://openalex.org/W3034758614, https://openalex.org/W6798219303, https://openalex.org/W6802203484, https://openalex.org/W6747106673, https://openalex.org/W6760726409, https://openalex.org/W2998903229, https://openalex.org/W2950697717, https://openalex.org/W2962684798, https://openalex.org/W6765527290, https://openalex.org/W3203663566, https://openalex.org/W4211147687, https://openalex.org/W4221167437, https://openalex.org/W6633288697, https://openalex.org/W2810840719, https://openalex.org/W2885804027, https://openalex.org/W3008329436, https://openalex.org/W2964101860, https://openalex.org/W6776587266, https://openalex.org/W2963064439, https://openalex.org/W3104546989, https://openalex.org/W3116010554, https://openalex.org/W2293700449, https://openalex.org/W2967186499, https://openalex.org/W2970340522, https://openalex.org/W3103179916, https://openalex.org/W2998008599, https://openalex.org/W1976538119, https://openalex.org/W1902237438, https://openalex.org/W2064675550, https://openalex.org/W4214700710, https://openalex.org/W4214717370, https://openalex.org/W4239857022, https://openalex.org/W4287079536, https://openalex.org/W4306716473, https://openalex.org/W2922067941, https://openalex.org/W3020872468, https://openalex.org/W1555380324, https://openalex.org/W2959918500, https://openalex.org/W3192162805, https://openalex.org/W4293566037, https://openalex.org/W4286905705, https://openalex.org/W4287795696 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 22, 41, 83, 103 |
| abstract_inverted_index.AI | 2 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.We | 38, 81, 120 |
| abstract_inverted_index.an | 5, 9, 54, 93 |
| abstract_inverted_index.by | 73 |
| abstract_inverted_index.in | 67 |
| abstract_inverted_index.is | 71, 109 |
| abstract_inverted_index.on | 48 |
| abstract_inverted_index.to | 7, 26, 56, 60, 76, 95, 128, 134 |
| abstract_inverted_index.we | 101 |
| abstract_inverted_index.53K | 87 |
| abstract_inverted_index.and | 11, 29, 90, 92, 115, 125, 130 |
| abstract_inverted_index.ask | 58 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.its | 79 |
| abstract_inverted_index.the | 18, 27, 30, 35, 49, 61, 64, 68, 74, 107, 112 |
| abstract_inverted_index.data | 114 |
| abstract_inverted_index.make | 121 |
| abstract_inverted_index.only | 33 |
| abstract_inverted_index.used | 72 |
| abstract_inverted_index.user | 20 |
| abstract_inverted_index.with | 86, 111, 117 |
| abstract_inverted_index.agent | 6, 31, 55, 75 |
| abstract_inverted_index.allow | 15 |
| abstract_inverted_index.based | 47 |
| abstract_inverted_index.gives | 21 |
| abstract_inverted_index.human | 19, 62 |
| abstract_inverted_index.solve | 99 |
| abstract_inverted_index.task. | 80 |
| abstract_inverted_index.their | 132 |
| abstract_inverted_index.user; | 63 |
| abstract_inverted_index.ALFRED | 50 |
| abstract_inverted_index.agent, | 28 |
| abstract_inverted_index.allows | 53 |
| abstract_inverted_index.answer | 96 |
| abstract_inverted_index.better | 77 |
| abstract_inverted_index.follow | 34 |
| abstract_inverted_index.oracle | 94 |
| abstract_inverted_index.user's | 69 |
| abstract_inverted_index.agents. | 138 |
| abstract_inverted_index.answers | 91 |
| abstract_inverted_index.command | 25, 36 |
| abstract_inverted_index.dataset | 85 |
| abstract_inverted_index.natural | 23 |
| abstract_inverted_index.objects | 13 |
| abstract_inverted_index.one-way | 16 |
| abstract_inverted_index.present | 39 |
| abstract_inverted_index.propose | 102, 129 |
| abstract_inverted_index.release | 82 |
| abstract_inverted_index.wherein | 106 |
| abstract_inverted_index.DialFRED | 52, 122 |
| abstract_inverted_index.Embodied | 1 |
| abstract_inverted_index.actively | 57 |
| abstract_inverted_index.building | 135 |
| abstract_inverted_index.complete | 78 |
| abstract_inverted_index.embodied | 43, 137 |
| abstract_inverted_index.evaluate | 131 |
| abstract_inverted_index.language | 24 |
| abstract_inverted_index.navigate | 8 |
| abstract_inverted_index.publicly | 123 |
| abstract_inverted_index.response | 70 |
| abstract_inverted_index.DialFRED, | 40, 100 |
| abstract_inverted_index.available | 124 |
| abstract_inverted_index.benchmark | 46 |
| abstract_inverted_index.encourage | 126 |
| abstract_inverted_index.following | 45 |
| abstract_inverted_index.framework | 105 |
| abstract_inverted_index.learning. | 119 |
| abstract_inverted_index.questions | 59, 89 |
| abstract_inverted_index.requiring | 4 |
| abstract_inverted_index.solutions | 133 |
| abstract_inverted_index.typically | 14 |
| abstract_inverted_index.additional | 65 |
| abstract_inverted_index.benchmark. | 51 |
| abstract_inverted_index.benchmarks | 3 |
| abstract_inverted_index.fine-tuned | 116 |
| abstract_inverted_index.manipulate | 12 |
| abstract_inverted_index.passively. | 37 |
| abstract_inverted_index.questioner | 108 |
| abstract_inverted_index.questions. | 97 |
| abstract_inverted_index.environment | 10 |
| abstract_inverted_index.information | 66 |
| abstract_inverted_index.instruction | 44 |
| abstract_inverted_index.pre-trained | 110 |
| abstract_inverted_index.researchers | 127 |
| abstract_inverted_index.reinforcement | 118 |
| abstract_inverted_index.task-relevant | 88 |
| abstract_inverted_index.communication: | 17 |
| abstract_inverted_index.dialog-enabled | 136 |
| abstract_inverted_index.Language-guided | 0 |
| abstract_inverted_index.human-annotated | 84, 113 |
| abstract_inverted_index.dialogue-enabled | 42 |
| abstract_inverted_index.questioner-performer | 104 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.95151802 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |