DIB-X: Formulating Explainability Principles for a Self-Explainable Model Through Information Theoretic Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/icassp48485.2024.10447094
The recent development of self-explainable deep learning approaches has focused on integrating well-defined explainability principles into learning process, with the goal of achieving these principles through optimization. In this work, we propose DIB-X, a self-explainable deep learning approach for image data, which adheres to the principles of minimal, sufficient, and interactive explanations. The minimality and sufficiency principles are rooted from the trade-off relationship within the information bottleneck framework. Distinctly, DIB-X directly quantifies the minimality principle using the recently proposed matrix-based Rényi's α-order entropy functional, circumventing the need for variational approximation and distributional assumption. The interactivity principle is realized by incorporating existing domain knowledge as prior explanations, fostering explanations that align with established domain understanding. Empirical results on MNIST and two marine environment monitoring datasets with different modalities reveal that our approach primarily provides improved explainability with the added advantage of enhanced classification performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp48485.2024.10447094
- OA Status
- green
- Cited By
- 1
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392910497
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392910497Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp48485.2024.10447094Digital Object Identifier
- Title
-
DIB-X: Formulating Explainability Principles for a Self-Explainable Model Through Information Theoretic LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-18Full publication date if available
- Authors
-
Changkyu Choi, Shujian Yu, Michael Kampffmeyer, Arnt-Børre Salberg, Nils Olav Handegard, Robert JenssenList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp48485.2024.10447094Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://research.vu.nl/en/publications/6926f27a-b527-4284-9063-1294a754f843Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Cognitive science, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392910497 |
|---|---|
| doi | https://doi.org/10.1109/icassp48485.2024.10447094 |
| ids.doi | https://doi.org/10.1109/icassp48485.2024.10447094 |
| ids.openalex | https://openalex.org/W4392910497 |
| fwci | 0.63877855 |
| type | article |
| title | DIB-X: Formulating Explainability Principles for a Self-Explainable Model Through Information Theoretic Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 7174 |
| biblio.first_page | 7170 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8920000195503235 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T14351 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.767799973487854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Statistical and Computational Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.558673620223999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.37596777081489563 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C188147891 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3642880320549011 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[2].display_name | Cognitive science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.14621493220329285 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.558673620223999 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.37596777081489563 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/cognitive-science |
| keywords[2].score | 0.3642880320549011 |
| keywords[2].display_name | Cognitive science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.14621493220329285 |
| keywords[3].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1109/icassp48485.2024.10447094 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp48485.2024.10447094 |
| locations[1].id | pmh:oai:research.vu.nl:openaire_cris_publications/6926f27a-b527-4284-9063-1294a754f843 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401107 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | VU Research Portal |
| locations[1].source.host_organization | https://openalex.org/I865915315 |
| locations[1].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[1].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | contributionToPeriodical |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Choi, C, Yu, S, Kampffmeyer, M, Salberg, A B, Handegard, N O & Jenssen, R 2024, DIB-X: FORMULATING EXPLAINABILITY PRINCIPLES FOR A SELF-EXPLAINABLE MODEL THROUGH INFORMATION THEORETIC LEARNING. in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) : [Proceedings]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 7170-7174, 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024, Seoul, Korea, Republic of, 14/04/24. https://doi.org/10.1109/ICASSP48485.2024.10447094 |
| locations[1].landing_page_url | https://research.vu.nl/en/publications/6926f27a-b527-4284-9063-1294a754f843 |
| locations[2].id | pmh:oai:research.vu.nl:publications/6926f27a-b527-4284-9063-1294a754f843 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401107 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | VU Research Portal |
| locations[2].source.host_organization | https://openalex.org/I865915315 |
| locations[2].source.host_organization_name | Vrije Universiteit Amsterdam |
| locations[2].source.host_organization_lineage | https://openalex.org/I865915315 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | contributionToPeriodical |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Choi, C, Yu, S, Kampffmeyer, M, Salberg, A B, Handegard, N O & Jenssen, R 2024, DIB-X: FORMULATING EXPLAINABILITY PRINCIPLES FOR A SELF-EXPLAINABLE MODEL THROUGH INFORMATION THEORETIC LEARNING. in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) : [Proceedings]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 7170-7174, 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024, Seoul, Korea, Republic of, 14/04/24. https://doi.org/10.1109/ICASSP48485.2024.10447094 |
| locations[2].landing_page_url | https://hdl.handle.net/1871.1/6926f27a-b527-4284-9063-1294a754f843 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038985661 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7087-4518 |
| authorships[0].author.display_name | Changkyu Choi |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78037679 |
| authorships[0].affiliations[0].raw_affiliation_string | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| authorships[0].institutions[0].id | https://openalex.org/I78037679 |
| authorships[0].institutions[0].ror | https://ror.org/00wge5k78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78037679 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | UiT The Arctic University of Norway |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Changkyu Choi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| authorships[1].author.id | https://openalex.org/A5041358503 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[1].author.display_name | Shujian Yu |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I865915315 |
| authorships[1].affiliations[0].raw_affiliation_string | Vrije Universiteit Amsterdam,HV Amsterdam,The Netherlands,1081 |
| authorships[1].institutions[0].id | https://openalex.org/I865915315 |
| authorships[1].institutions[0].ror | https://ror.org/008xxew50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I865915315 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Vrije Universiteit Amsterdam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shujian Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Vrije Universiteit Amsterdam,HV Amsterdam,The Netherlands,1081 |
| authorships[2].author.id | https://openalex.org/A5023225712 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7699-0405 |
| authorships[2].author.display_name | Michael Kampffmeyer |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I78037679 |
| authorships[2].affiliations[0].raw_affiliation_string | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| authorships[2].institutions[0].id | https://openalex.org/I78037679 |
| authorships[2].institutions[0].ror | https://ror.org/00wge5k78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I78037679 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | UiT The Arctic University of Norway |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Kampffmeyer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| authorships[3].author.id | https://openalex.org/A5084672445 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8113-8460 |
| authorships[3].author.display_name | Arnt-Børre Salberg |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I144648426 |
| authorships[3].affiliations[0].raw_affiliation_string | Norwegian Computing Center, Oslo, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I144648426 |
| authorships[3].institutions[0].ror | https://ror.org/02gm7te43 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I144648426 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | Norwegian Computing Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Arnt-Børre Salberg |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Norwegian Computing Center, Oslo, Norway |
| authorships[4].author.id | https://openalex.org/A5059245308 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9708-9042 |
| authorships[4].author.display_name | Nils Olav Handegard |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802153510 |
| authorships[4].affiliations[0].raw_affiliation_string | Norwegian Institute of Marine Research, Bergen, Norway |
| authorships[4].institutions[0].id | https://openalex.org/I2802153510 |
| authorships[4].institutions[0].ror | https://ror.org/05vg74d16 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802153510, https://openalex.org/I4210116418, https://openalex.org/I4210149801 |
| authorships[4].institutions[0].country_code | NO |
| authorships[4].institutions[0].display_name | Norwegian Institute of Marine Research |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nils Olav Handegard |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Norwegian Institute of Marine Research, Bergen, Norway |
| authorships[5].author.id | https://openalex.org/A5013414039 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7496-8474 |
| authorships[5].author.display_name | Robert Jenssen |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I78037679 |
| authorships[5].affiliations[0].raw_affiliation_string | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| authorships[5].institutions[0].id | https://openalex.org/I78037679 |
| authorships[5].institutions[0].ror | https://ror.org/00wge5k78 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I78037679 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | UiT The Arctic University of Norway |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Robert Jenssen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | UiT The Arctic University of Norway,Department of Physics and Technology,Tromsø,Norway |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://research.vu.nl/en/publications/6926f27a-b527-4284-9063-1294a754f843 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DIB-X: Formulating Explainability Principles for a Self-Explainable Model Through Information Theoretic Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8920000195503235 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:research.vu.nl:openaire_cris_publications/6926f27a-b527-4284-9063-1294a754f843 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401107 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | VU Research Portal |
| best_oa_location.source.host_organization | https://openalex.org/I865915315 |
| best_oa_location.source.host_organization_name | Vrije Universiteit Amsterdam |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I865915315 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | contributionToPeriodical |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Choi, C, Yu, S, Kampffmeyer, M, Salberg, A B, Handegard, N O & Jenssen, R 2024, DIB-X: FORMULATING EXPLAINABILITY PRINCIPLES FOR A SELF-EXPLAINABLE MODEL THROUGH INFORMATION THEORETIC LEARNING. in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) : [Proceedings]. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, Institute of Electrical and Electronics Engineers Inc., pp. 7170-7174, 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024, Seoul, Korea, Republic of, 14/04/24. https://doi.org/10.1109/ICASSP48485.2024.10447094 |
| best_oa_location.landing_page_url | https://research.vu.nl/en/publications/6926f27a-b527-4284-9063-1294a754f843 |
| primary_location.id | doi:10.1109/icassp48485.2024.10447094 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp48485.2024.10447094 |
| publication_date | 2024-03-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4327771951, https://openalex.org/W2962858109, https://openalex.org/W2282821441, https://openalex.org/W6846081844, https://openalex.org/W3197368102, https://openalex.org/W4288083797, https://openalex.org/W4230367971, https://openalex.org/W2809671526, https://openalex.org/W2964184826, https://openalex.org/W2966030703, https://openalex.org/W6752170072, https://openalex.org/W2945976633, https://openalex.org/W2917322567, https://openalex.org/W2978725006, https://openalex.org/W3160146370, https://openalex.org/W6838110831, https://openalex.org/W6786498300, https://openalex.org/W3133902514, https://openalex.org/W2880214242, https://openalex.org/W4224795197, https://openalex.org/W6729906282, https://openalex.org/W2951885001, https://openalex.org/W4281493131, https://openalex.org/W569478347, https://openalex.org/W2560662850, https://openalex.org/W4306815482, https://openalex.org/W4317940133, https://openalex.org/W3107600318 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 33 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.is | 96 |
| abstract_inverted_index.of | 3, 21, 46, 139 |
| abstract_inverted_index.on | 10, 116 |
| abstract_inverted_index.to | 43 |
| abstract_inverted_index.we | 30 |
| abstract_inverted_index.The | 0, 52, 93 |
| abstract_inverted_index.and | 49, 54, 90, 118 |
| abstract_inverted_index.are | 57 |
| abstract_inverted_index.for | 38, 87 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 19, 44, 60, 64, 72, 76, 85, 136 |
| abstract_inverted_index.two | 119 |
| abstract_inverted_index.deep | 5, 35 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.goal | 20 |
| abstract_inverted_index.into | 15 |
| abstract_inverted_index.need | 86 |
| abstract_inverted_index.that | 108, 128 |
| abstract_inverted_index.this | 28 |
| abstract_inverted_index.with | 18, 110, 124, 135 |
| abstract_inverted_index.DIB-X | 69 |
| abstract_inverted_index.MNIST | 117 |
| abstract_inverted_index.added | 137 |
| abstract_inverted_index.align | 109 |
| abstract_inverted_index.data, | 40 |
| abstract_inverted_index.image | 39 |
| abstract_inverted_index.prior | 104 |
| abstract_inverted_index.these | 23 |
| abstract_inverted_index.using | 75 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.work, | 29 |
| abstract_inverted_index.DIB-X, | 32 |
| abstract_inverted_index.domain | 101, 112 |
| abstract_inverted_index.marine | 120 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.reveal | 127 |
| abstract_inverted_index.rooted | 58 |
| abstract_inverted_index.within | 63 |
| abstract_inverted_index.adheres | 42 |
| abstract_inverted_index.entropy | 82 |
| abstract_inverted_index.focused | 9 |
| abstract_inverted_index.propose | 31 |
| abstract_inverted_index.results | 115 |
| abstract_inverted_index.through | 25 |
| abstract_inverted_index.Rényi's | 80 |
| abstract_inverted_index.approach | 37, 130 |
| abstract_inverted_index.datasets | 123 |
| abstract_inverted_index.directly | 70 |
| abstract_inverted_index.enhanced | 140 |
| abstract_inverted_index.existing | 100 |
| abstract_inverted_index.improved | 133 |
| abstract_inverted_index.learning | 6, 16, 36 |
| abstract_inverted_index.minimal, | 47 |
| abstract_inverted_index.process, | 17 |
| abstract_inverted_index.proposed | 78 |
| abstract_inverted_index.provides | 132 |
| abstract_inverted_index.realized | 97 |
| abstract_inverted_index.recently | 77 |
| abstract_inverted_index.α-order | 81 |
| abstract_inverted_index.Empirical | 114 |
| abstract_inverted_index.achieving | 22 |
| abstract_inverted_index.advantage | 138 |
| abstract_inverted_index.different | 125 |
| abstract_inverted_index.fostering | 106 |
| abstract_inverted_index.knowledge | 102 |
| abstract_inverted_index.primarily | 131 |
| abstract_inverted_index.principle | 74, 95 |
| abstract_inverted_index.trade-off | 61 |
| abstract_inverted_index.approaches | 7 |
| abstract_inverted_index.bottleneck | 66 |
| abstract_inverted_index.framework. | 67 |
| abstract_inverted_index.minimality | 53, 73 |
| abstract_inverted_index.modalities | 126 |
| abstract_inverted_index.monitoring | 122 |
| abstract_inverted_index.principles | 14, 24, 45, 56 |
| abstract_inverted_index.quantifies | 71 |
| abstract_inverted_index.Distinctly, | 68 |
| abstract_inverted_index.assumption. | 92 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.environment | 121 |
| abstract_inverted_index.established | 111 |
| abstract_inverted_index.functional, | 83 |
| abstract_inverted_index.information | 65 |
| abstract_inverted_index.integrating | 11 |
| abstract_inverted_index.interactive | 50 |
| abstract_inverted_index.sufficiency | 55 |
| abstract_inverted_index.sufficient, | 48 |
| abstract_inverted_index.variational | 88 |
| abstract_inverted_index.explanations | 107 |
| abstract_inverted_index.matrix-based | 79 |
| abstract_inverted_index.performance. | 142 |
| abstract_inverted_index.relationship | 62 |
| abstract_inverted_index.well-defined | 12 |
| abstract_inverted_index.approximation | 89 |
| abstract_inverted_index.circumventing | 84 |
| abstract_inverted_index.explanations, | 105 |
| abstract_inverted_index.explanations. | 51 |
| abstract_inverted_index.incorporating | 99 |
| abstract_inverted_index.interactivity | 94 |
| abstract_inverted_index.optimization. | 26 |
| abstract_inverted_index.classification | 141 |
| abstract_inverted_index.distributional | 91 |
| abstract_inverted_index.explainability | 13, 134 |
| abstract_inverted_index.understanding. | 113 |
| abstract_inverted_index.self-explainable | 4, 34 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.65448653 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |