Dictionary Learning With Low Computational Complexity for Classification of Human Micro-Dopplers Across Multiple Carrier Frequencies Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1109/access.2018.2843391
Recently, several machine learning algorithms have been applied for classifying micro-Doppler signatures from different human motions. However, these algorithms must demonstrate versatility in handling diversity in test and training data to be used for real-life scenarios. For example, situations may arise where the propagation channel or the presence of interference sources in the test site will permit only specific frequency bands of radar operation. These bands may differ from those used previously while training. In this paper, we examine the performances of three sparsity driven dictionary learning algorithms-synthesis, deep, and analysis-for learning unique features extracted from training data gathered across multiple carrier frequencies. These features are subsequently used for classifying test data from another distinct carrier frequency. Our experimental results, from measurement data, show that the dictionary learning algorithms are capable of extracting meaningful representations of the micro-Dopplers despite the rich frequency diversity in the data. In particular, the deep dictionary learning algorithm yields a high classification accuracy of 91% with a very low computational time for testing.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2018.2843391
- OA Status
- gold
- Cited By
- 19
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2805246991
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2805246991Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2018.2843391Digital Object Identifier
- Title
-
Dictionary Learning With Low Computational Complexity for Classification of Human Micro-Dopplers Across Multiple Carrier FrequenciesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Shelly Vishwakarma, Shobha Sundar RamList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2018.2843391Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2018.2843391Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Radar, Deep learning, Test data, Interference (communication), Pattern recognition (psychology), Channel (broadcasting), Telecommunications, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 1, 2022: 1, 2021: 5, 2020: 4Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2805246991 |
|---|---|
| doi | https://doi.org/10.1109/access.2018.2843391 |
| ids.doi | https://doi.org/10.1109/access.2018.2843391 |
| ids.mag | 2805246991 |
| ids.openalex | https://openalex.org/W2805246991 |
| fwci | 5.24918535 |
| type | article |
| title | Dictionary Learning With Low Computational Complexity for Classification of Human Micro-Dopplers Across Multiple Carrier Frequencies |
| awards[0].id | https://openalex.org/G5007010453 |
| awards[0].funder_id | https://openalex.org/F4320338279 |
| awards[0].display_name | |
| awards[0].funder_award_id | 5IOA036 FA23861610004 |
| awards[0].funder_display_name | Air Force Office of Scientific Research |
| biblio.issue | |
| biblio.volume | 6 |
| biblio.last_page | 29805 |
| biblio.first_page | 29793 |
| topics[0].id | https://openalex.org/T11038 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Advanced SAR Imaging Techniques |
| topics[1].id | https://openalex.org/T12740 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Gait Recognition and Analysis |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| funders[0].id | https://openalex.org/F4320338279 |
| funders[0].ror | https://ror.org/011e9bt93 |
| funders[0].display_name | Air Force Office of Scientific Research |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7667008638381958 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6664376258850098 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5891222953796387 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C554190296 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5602918863296509 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[3].display_name | Radar |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49389487504959106 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C16910744 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46392449736595154 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7705759 |
| concepts[5].display_name | Test data |
| concepts[6].id | https://openalex.org/C32022120 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43213126063346863 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[6].display_name | Interference (communication) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.403106689453125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C127162648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3694641590118408 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[8].display_name | Channel (broadcasting) |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07822304964065552 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7667008638381958 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6664376258850098 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5891222953796387 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/radar |
| keywords[3].score | 0.5602918863296509 |
| keywords[3].display_name | Radar |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.49389487504959106 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/test-data |
| keywords[5].score | 0.46392449736595154 |
| keywords[5].display_name | Test data |
| keywords[6].id | https://openalex.org/keywords/interference |
| keywords[6].score | 0.43213126063346863 |
| keywords[6].display_name | Interference (communication) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.403106689453125 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/channel |
| keywords[8].score | 0.3694641590118408 |
| keywords[8].display_name | Channel (broadcasting) |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.07822304964065552 |
| keywords[9].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/access.2018.2843391 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2018.2843391 |
| locations[1].id | pmh:oai:doaj.org/article:dba80aad001147a2b855500b25d70e11 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 6, Pp 29793-29805 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/dba80aad001147a2b855500b25d70e11 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042432973 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1035-3259 |
| authorships[0].author.display_name | Shelly Vishwakarma |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[0].affiliations[0].raw_affiliation_string | Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, IN |
| authorships[0].institutions[0].id | https://openalex.org/I119939252 |
| authorships[0].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shelly Vishwakarma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, IN |
| authorships[1].author.id | https://openalex.org/A5016832424 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0265-8610 |
| authorships[1].author.display_name | Shobha Sundar Ram |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119939252 |
| authorships[1].affiliations[0].raw_affiliation_string | Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, IN |
| authorships[1].institutions[0].id | https://openalex.org/I119939252 |
| authorships[1].institutions[0].ror | https://ror.org/03vfp4g33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119939252 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indraprastha Institute of Information Technology Delhi |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Shobha Sundar Ram |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Indraprastha Institute of Information Technology Delhi, New Delhi, Delhi, IN |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2018.2843391 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dictionary Learning With Low Computational Complexity for Classification of Human Micro-Dopplers Across Multiple Carrier Frequencies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11038 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Advanced SAR Imaging Techniques |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2731899572, https://openalex.org/W4230611425, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W4383066092, https://openalex.org/W2375786911, https://openalex.org/W3215138031, https://openalex.org/W2804383999 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2018.2843391 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2018.2843391 |
| primary_location.id | doi:10.1109/access.2018.2843391 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2018.2843391 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2129812935, https://openalex.org/W1992405901, https://openalex.org/W2161219071, https://openalex.org/W2164647001, https://openalex.org/W2163922914, https://openalex.org/W1876161723, https://openalex.org/W6674642818, https://openalex.org/W2005876975, https://openalex.org/W6684888087, https://openalex.org/W6631529783, https://openalex.org/W2625538023, https://openalex.org/W2043415540, https://openalex.org/W2067534574, https://openalex.org/W1533539416, https://openalex.org/W2255273027, https://openalex.org/W1224644281, https://openalex.org/W2329339966, https://openalex.org/W2237319724, https://openalex.org/W2789450195, https://openalex.org/W2242223225, https://openalex.org/W6743345253, https://openalex.org/W2626433718, https://openalex.org/W6736945006, https://openalex.org/W2135046866, https://openalex.org/W2140856955, https://openalex.org/W2127271355, https://openalex.org/W2028781966, https://openalex.org/W2543346340, https://openalex.org/W2114354118, https://openalex.org/W2227120492, https://openalex.org/W2045731367, https://openalex.org/W6634461397, https://openalex.org/W2086323910, https://openalex.org/W2061650437, https://openalex.org/W2157770256, https://openalex.org/W1978529158, https://openalex.org/W2078527935, https://openalex.org/W1982940576, https://openalex.org/W232528759, https://openalex.org/W2165913693, https://openalex.org/W2053282089, https://openalex.org/W2153594606, https://openalex.org/W2166850196, https://openalex.org/W2149711710, https://openalex.org/W2271854443, https://openalex.org/W2011464887, https://openalex.org/W2312351803, https://openalex.org/W2086188282, https://openalex.org/W2560042709, https://openalex.org/W2027805700, https://openalex.org/W2143731537, https://openalex.org/W1994281301, https://openalex.org/W2746454943, https://openalex.org/W2624812808, https://openalex.org/W2160547390, https://openalex.org/W2115429828, https://openalex.org/W2097018403, https://openalex.org/W1525244797, https://openalex.org/W2167985623, https://openalex.org/W2608809679, https://openalex.org/W2187089797, https://openalex.org/W2749218967, https://openalex.org/W281858385, https://openalex.org/W3104772982, https://openalex.org/W4232730838, https://openalex.org/W1572703558 |
| referenced_works_count | 66 |
| abstract_inverted_index.a | 154, 161 |
| abstract_inverted_index.In | 74, 146 |
| abstract_inverted_index.be | 31 |
| abstract_inverted_index.in | 22, 25, 51, 143 |
| abstract_inverted_index.of | 48, 61, 81, 131, 135, 158 |
| abstract_inverted_index.or | 45 |
| abstract_inverted_index.to | 30 |
| abstract_inverted_index.we | 77 |
| abstract_inverted_index.91% | 159 |
| abstract_inverted_index.For | 36 |
| abstract_inverted_index.Our | 117 |
| abstract_inverted_index.and | 27, 89 |
| abstract_inverted_index.are | 105, 129 |
| abstract_inverted_index.for | 8, 33, 108, 166 |
| abstract_inverted_index.low | 163 |
| abstract_inverted_index.may | 39, 66 |
| abstract_inverted_index.the | 42, 46, 52, 79, 125, 136, 139, 144, 148 |
| abstract_inverted_index.been | 6 |
| abstract_inverted_index.data | 29, 97, 111 |
| abstract_inverted_index.deep | 149 |
| abstract_inverted_index.from | 12, 68, 95, 112, 120 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.high | 155 |
| abstract_inverted_index.must | 19 |
| abstract_inverted_index.only | 57 |
| abstract_inverted_index.rich | 140 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.site | 54 |
| abstract_inverted_index.test | 26, 53, 110 |
| abstract_inverted_index.that | 124 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.time | 165 |
| abstract_inverted_index.used | 32, 70, 107 |
| abstract_inverted_index.very | 162 |
| abstract_inverted_index.will | 55 |
| abstract_inverted_index.with | 160 |
| abstract_inverted_index.These | 64, 103 |
| abstract_inverted_index.arise | 40 |
| abstract_inverted_index.bands | 60, 65 |
| abstract_inverted_index.data, | 122 |
| abstract_inverted_index.data. | 145 |
| abstract_inverted_index.deep, | 88 |
| abstract_inverted_index.human | 14 |
| abstract_inverted_index.radar | 62 |
| abstract_inverted_index.these | 17 |
| abstract_inverted_index.those | 69 |
| abstract_inverted_index.three | 82 |
| abstract_inverted_index.where | 41 |
| abstract_inverted_index.while | 72 |
| abstract_inverted_index.across | 99 |
| abstract_inverted_index.differ | 67 |
| abstract_inverted_index.driven | 84 |
| abstract_inverted_index.paper, | 76 |
| abstract_inverted_index.permit | 56 |
| abstract_inverted_index.unique | 92 |
| abstract_inverted_index.yields | 153 |
| abstract_inverted_index.another | 113 |
| abstract_inverted_index.applied | 7 |
| abstract_inverted_index.capable | 130 |
| abstract_inverted_index.carrier | 101, 115 |
| abstract_inverted_index.channel | 44 |
| abstract_inverted_index.despite | 138 |
| abstract_inverted_index.examine | 78 |
| abstract_inverted_index.machine | 2 |
| abstract_inverted_index.several | 1 |
| abstract_inverted_index.sources | 50 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accuracy | 157 |
| abstract_inverted_index.distinct | 114 |
| abstract_inverted_index.example, | 37 |
| abstract_inverted_index.features | 93, 104 |
| abstract_inverted_index.gathered | 98 |
| abstract_inverted_index.handling | 23 |
| abstract_inverted_index.learning | 3, 86, 91, 127, 151 |
| abstract_inverted_index.motions. | 15 |
| abstract_inverted_index.multiple | 100 |
| abstract_inverted_index.presence | 47 |
| abstract_inverted_index.results, | 119 |
| abstract_inverted_index.sparsity | 83 |
| abstract_inverted_index.specific | 58 |
| abstract_inverted_index.testing. | 167 |
| abstract_inverted_index.training | 28, 96 |
| abstract_inverted_index.Recently, | 0 |
| abstract_inverted_index.algorithm | 152 |
| abstract_inverted_index.different | 13 |
| abstract_inverted_index.diversity | 24, 142 |
| abstract_inverted_index.extracted | 94 |
| abstract_inverted_index.frequency | 59, 141 |
| abstract_inverted_index.real-life | 34 |
| abstract_inverted_index.training. | 73 |
| abstract_inverted_index.algorithms | 4, 18, 128 |
| abstract_inverted_index.dictionary | 85, 126, 150 |
| abstract_inverted_index.extracting | 132 |
| abstract_inverted_index.frequency. | 116 |
| abstract_inverted_index.meaningful | 133 |
| abstract_inverted_index.operation. | 63 |
| abstract_inverted_index.previously | 71 |
| abstract_inverted_index.scenarios. | 35 |
| abstract_inverted_index.signatures | 11 |
| abstract_inverted_index.situations | 38 |
| abstract_inverted_index.classifying | 9, 109 |
| abstract_inverted_index.demonstrate | 20 |
| abstract_inverted_index.measurement | 121 |
| abstract_inverted_index.particular, | 147 |
| abstract_inverted_index.propagation | 43 |
| abstract_inverted_index.versatility | 21 |
| abstract_inverted_index.analysis-for | 90 |
| abstract_inverted_index.experimental | 118 |
| abstract_inverted_index.frequencies. | 102 |
| abstract_inverted_index.interference | 49 |
| abstract_inverted_index.performances | 80 |
| abstract_inverted_index.subsequently | 106 |
| abstract_inverted_index.computational | 164 |
| abstract_inverted_index.micro-Doppler | 10 |
| abstract_inverted_index.classification | 156 |
| abstract_inverted_index.micro-Dopplers | 137 |
| abstract_inverted_index.representations | 134 |
| abstract_inverted_index.algorithms-synthesis, | 87 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.95834577 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |