Differentiable Neural Input Search for Recommender Systems Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.04466
Latent factor models are the driving forces of the state-of-the-art recommender systems, with an important insight of vectorizing raw input features into dense embeddings. The dimensions of different feature embeddings are often set to a same value empirically, which limits the predictive performance of latent factor models. Existing works have proposed heuristic or reinforcement learning-based methods to search for mixed feature embedding dimensions. For efficiency concern, these methods typically choose embedding dimensions from a restricted set of candidate dimensions. However, this restriction will hurt the flexibility of dimension selection, leading to suboptimal performance of search results. In this paper, we propose Differentiable Neural Input Search (DNIS), a method that searches for mixed feature embedding dimensions in a more flexible space through continuous relaxation and differentiable optimization. The key idea is to introduce a soft selection layer that controls the significance of each embedding dimension, and optimize this layer according to model's validation performance. DNIS is model-agnostic and thus can be seamlessly incorporated with existing latent factor models for recommendation. We conduct experiments with various architectures of latent factor models on three public real-world datasets for rating prediction, Click-Through-Rate (CTR) prediction, and top-k item recommendation. The results demonstrate that our method achieves the best predictive performance compared with existing neural input search approaches with fewer embedding parameters and less time cost.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.04466
- https://arxiv.org/pdf/2006.04466
- OA Status
- green
- Cited By
- 20
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3033138048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3033138048Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.04466Digital Object Identifier
- Title
-
Differentiable Neural Input Search for Recommender SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-08Full publication date if available
- Authors
-
Weiyu Cheng, Yanyan Shen, Linpeng HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.04466Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.04466Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.04466Direct OA link when available
- Concepts
-
Computer science, Embedding, Recommender system, Artificial intelligence, Feature (linguistics), Heuristic, Feature engineering, Dimension (graph theory), Machine learning, Set (abstract data type), Feature vector, Differentiable function, Key (lock), Data mining, Deep learning, Mathematics, Linguistics, Pure mathematics, Philosophy, Computer security, Programming language, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 5, 2022: 4, 2021: 7, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3033138048 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.04466 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.04466 |
| ids.mag | 3033138048 |
| ids.openalex | https://openalex.org/W3033138048 |
| fwci | |
| type | preprint |
| title | Differentiable Neural Input Search for Recommender Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T12101 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Advanced Bandit Algorithms Research |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7650358080863953 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7254942655563354 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C557471498 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6314074397087097 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[2].display_name | Recommender system |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5772075057029724 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5731950402259827 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C173801870 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5264231562614441 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[5].display_name | Heuristic |
| concepts[6].id | https://openalex.org/C2778827112 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5129789710044861 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[6].display_name | Feature engineering |
| concepts[7].id | https://openalex.org/C33676613 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5024194717407227 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[7].display_name | Dimension (graph theory) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.49216407537460327 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4600616991519928 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C83665646 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45749127864837646 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[10].display_name | Feature vector |
| concepts[11].id | https://openalex.org/C202615002 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4465932250022888 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[11].display_name | Differentiable function |
| concepts[12].id | https://openalex.org/C26517878 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4154566824436188 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[12].display_name | Key (lock) |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3771160840988159 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C108583219 |
| concepts[14].level | 2 |
| concepts[14].score | 0.30485817790031433 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[14].display_name | Deep learning |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.13369926810264587 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C202444582 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[17].display_name | Pure mathematics |
| concepts[18].id | https://openalex.org/C138885662 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[18].display_name | Philosophy |
| concepts[19].id | https://openalex.org/C38652104 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[19].display_name | Computer security |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7650358080863953 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.7254942655563354 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/recommender-system |
| keywords[2].score | 0.6314074397087097 |
| keywords[2].display_name | Recommender system |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5772075057029724 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5731950402259827 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/heuristic |
| keywords[5].score | 0.5264231562614441 |
| keywords[5].display_name | Heuristic |
| keywords[6].id | https://openalex.org/keywords/feature-engineering |
| keywords[6].score | 0.5129789710044861 |
| keywords[6].display_name | Feature engineering |
| keywords[7].id | https://openalex.org/keywords/dimension |
| keywords[7].score | 0.5024194717407227 |
| keywords[7].display_name | Dimension (graph theory) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.49216407537460327 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.4600616991519928 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/feature-vector |
| keywords[10].score | 0.45749127864837646 |
| keywords[10].display_name | Feature vector |
| keywords[11].id | https://openalex.org/keywords/differentiable-function |
| keywords[11].score | 0.4465932250022888 |
| keywords[11].display_name | Differentiable function |
| keywords[12].id | https://openalex.org/keywords/key |
| keywords[12].score | 0.4154566824436188 |
| keywords[12].display_name | Key (lock) |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3771160840988159 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/deep-learning |
| keywords[14].score | 0.30485817790031433 |
| keywords[14].display_name | Deep learning |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.13369926810264587 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.04466 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.04466 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.04466 |
| locations[1].id | doi:10.48550/arxiv.2006.04466 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.04466 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026429257 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2381-6830 |
| authorships[0].author.display_name | Weiyu Cheng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weiyu Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053338416 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8364-3674 |
| authorships[1].author.display_name | Yanyan Shen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanyan Shen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5059624019 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1531-7962 |
| authorships[2].author.display_name | Linpeng Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Linpeng Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanghai Jiao Tong University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.04466 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Differentiable Neural Input Search for Recommender Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W4285277090, https://openalex.org/W4327738859, https://openalex.org/W4390273403, https://openalex.org/W4386781444, https://openalex.org/W2150182025, https://openalex.org/W3092950680, https://openalex.org/W3197542405, https://openalex.org/W2056712470, https://openalex.org/W3125580266, https://openalex.org/W4317039510 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.04466 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.04466 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.04466 |
| primary_location.id | pmh:oai:arXiv.org:2006.04466 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.04466 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.04466 |
| publication_date | 2020-06-08 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1581066146, https://openalex.org/W1868018859, https://openalex.org/W2951569836, https://openalex.org/W2810075754, https://openalex.org/W3105144692, https://openalex.org/W2963306862, https://openalex.org/W2605350416, https://openalex.org/W2963813662, https://openalex.org/W2219888463, https://openalex.org/W2808482351, https://openalex.org/W2475334473, https://openalex.org/W2962965870, https://openalex.org/W2556833785, https://openalex.org/W2796265726, https://openalex.org/W2793768763, https://openalex.org/W2766839578, https://openalex.org/W2964081807, https://openalex.org/W2964515685, https://openalex.org/W2604662567, https://openalex.org/W2964331719, https://openalex.org/W2964259004, https://openalex.org/W2266822037, https://openalex.org/W2963674932, https://openalex.org/W2963374479, https://openalex.org/W2113207845, https://openalex.org/W2965658867, https://openalex.org/W2270245739, https://openalex.org/W3008650695, https://openalex.org/W2891778567, https://openalex.org/W2295739661, https://openalex.org/W2901839763, https://openalex.org/W2970971581, https://openalex.org/W3081362488, https://openalex.org/W2512971201, https://openalex.org/W2594529350, https://openalex.org/W2124659975, https://openalex.org/W2587014634, https://openalex.org/W2975367729, https://openalex.org/W2958981444, https://openalex.org/W2962847160 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 34, 73, 106, 116, 132 |
| abstract_inverted_index.In | 96 |
| abstract_inverted_index.We | 169 |
| abstract_inverted_index.an | 13 |
| abstract_inverted_index.be | 159 |
| abstract_inverted_index.in | 115 |
| abstract_inverted_index.is | 129, 154 |
| abstract_inverted_index.of | 7, 16, 26, 43, 76, 86, 93, 140, 175 |
| abstract_inverted_index.on | 179 |
| abstract_inverted_index.or | 52 |
| abstract_inverted_index.to | 33, 56, 90, 130, 149 |
| abstract_inverted_index.we | 99 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.The | 24, 126, 194 |
| abstract_inverted_index.and | 123, 144, 156, 190, 216 |
| abstract_inverted_index.are | 3, 30 |
| abstract_inverted_index.can | 158 |
| abstract_inverted_index.for | 58, 110, 167, 184 |
| abstract_inverted_index.key | 127 |
| abstract_inverted_index.our | 198 |
| abstract_inverted_index.raw | 18 |
| abstract_inverted_index.set | 32, 75 |
| abstract_inverted_index.the | 4, 8, 40, 84, 138, 201 |
| abstract_inverted_index.DNIS | 153 |
| abstract_inverted_index.best | 202 |
| abstract_inverted_index.each | 141 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.hurt | 83 |
| abstract_inverted_index.idea | 128 |
| abstract_inverted_index.into | 21 |
| abstract_inverted_index.item | 192 |
| abstract_inverted_index.less | 217 |
| abstract_inverted_index.more | 117 |
| abstract_inverted_index.same | 35 |
| abstract_inverted_index.soft | 133 |
| abstract_inverted_index.that | 108, 136, 197 |
| abstract_inverted_index.this | 80, 97, 146 |
| abstract_inverted_index.thus | 157 |
| abstract_inverted_index.time | 218 |
| abstract_inverted_index.will | 82 |
| abstract_inverted_index.with | 12, 162, 172, 206, 212 |
| abstract_inverted_index.(CTR) | 188 |
| abstract_inverted_index.Input | 103 |
| abstract_inverted_index.cost. | 219 |
| abstract_inverted_index.dense | 22 |
| abstract_inverted_index.fewer | 213 |
| abstract_inverted_index.input | 19, 209 |
| abstract_inverted_index.layer | 135, 147 |
| abstract_inverted_index.mixed | 59, 111 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.space | 119 |
| abstract_inverted_index.these | 66 |
| abstract_inverted_index.three | 180 |
| abstract_inverted_index.top-k | 191 |
| abstract_inverted_index.value | 36 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.works | 48 |
| abstract_inverted_index.Latent | 0 |
| abstract_inverted_index.Neural | 102 |
| abstract_inverted_index.Search | 104 |
| abstract_inverted_index.choose | 69 |
| abstract_inverted_index.factor | 1, 45, 165, 177 |
| abstract_inverted_index.forces | 6 |
| abstract_inverted_index.latent | 44, 164, 176 |
| abstract_inverted_index.limits | 39 |
| abstract_inverted_index.method | 107, 199 |
| abstract_inverted_index.models | 2, 166, 178 |
| abstract_inverted_index.neural | 208 |
| abstract_inverted_index.paper, | 98 |
| abstract_inverted_index.public | 181 |
| abstract_inverted_index.rating | 185 |
| abstract_inverted_index.search | 57, 94, 210 |
| abstract_inverted_index.(DNIS), | 105 |
| abstract_inverted_index.conduct | 170 |
| abstract_inverted_index.driving | 5 |
| abstract_inverted_index.feature | 28, 60, 112 |
| abstract_inverted_index.insight | 15 |
| abstract_inverted_index.leading | 89 |
| abstract_inverted_index.methods | 55, 67 |
| abstract_inverted_index.model's | 150 |
| abstract_inverted_index.models. | 46 |
| abstract_inverted_index.propose | 100 |
| abstract_inverted_index.results | 195 |
| abstract_inverted_index.through | 120 |
| abstract_inverted_index.various | 173 |
| abstract_inverted_index.Existing | 47 |
| abstract_inverted_index.However, | 79 |
| abstract_inverted_index.achieves | 200 |
| abstract_inverted_index.compared | 205 |
| abstract_inverted_index.concern, | 65 |
| abstract_inverted_index.controls | 137 |
| abstract_inverted_index.datasets | 183 |
| abstract_inverted_index.existing | 163, 207 |
| abstract_inverted_index.features | 20 |
| abstract_inverted_index.flexible | 118 |
| abstract_inverted_index.optimize | 145 |
| abstract_inverted_index.proposed | 50 |
| abstract_inverted_index.results. | 95 |
| abstract_inverted_index.searches | 109 |
| abstract_inverted_index.systems, | 11 |
| abstract_inverted_index.according | 148 |
| abstract_inverted_index.candidate | 77 |
| abstract_inverted_index.different | 27 |
| abstract_inverted_index.dimension | 87 |
| abstract_inverted_index.embedding | 61, 70, 113, 142, 214 |
| abstract_inverted_index.heuristic | 51 |
| abstract_inverted_index.important | 14 |
| abstract_inverted_index.introduce | 131 |
| abstract_inverted_index.selection | 134 |
| abstract_inverted_index.typically | 68 |
| abstract_inverted_index.approaches | 211 |
| abstract_inverted_index.continuous | 121 |
| abstract_inverted_index.dimension, | 143 |
| abstract_inverted_index.dimensions | 25, 71, 114 |
| abstract_inverted_index.efficiency | 64 |
| abstract_inverted_index.embeddings | 29 |
| abstract_inverted_index.parameters | 215 |
| abstract_inverted_index.predictive | 41, 203 |
| abstract_inverted_index.real-world | 182 |
| abstract_inverted_index.relaxation | 122 |
| abstract_inverted_index.restricted | 74 |
| abstract_inverted_index.seamlessly | 160 |
| abstract_inverted_index.selection, | 88 |
| abstract_inverted_index.suboptimal | 91 |
| abstract_inverted_index.validation | 151 |
| abstract_inverted_index.demonstrate | 196 |
| abstract_inverted_index.dimensions. | 62, 78 |
| abstract_inverted_index.embeddings. | 23 |
| abstract_inverted_index.experiments | 171 |
| abstract_inverted_index.flexibility | 85 |
| abstract_inverted_index.performance | 42, 92, 204 |
| abstract_inverted_index.prediction, | 186, 189 |
| abstract_inverted_index.recommender | 10 |
| abstract_inverted_index.restriction | 81 |
| abstract_inverted_index.vectorizing | 17 |
| abstract_inverted_index.empirically, | 37 |
| abstract_inverted_index.incorporated | 161 |
| abstract_inverted_index.performance. | 152 |
| abstract_inverted_index.significance | 139 |
| abstract_inverted_index.architectures | 174 |
| abstract_inverted_index.optimization. | 125 |
| abstract_inverted_index.reinforcement | 53 |
| abstract_inverted_index.Differentiable | 101 |
| abstract_inverted_index.differentiable | 124 |
| abstract_inverted_index.learning-based | 54 |
| abstract_inverted_index.model-agnostic | 155 |
| abstract_inverted_index.recommendation. | 168, 193 |
| abstract_inverted_index.state-of-the-art | 9 |
| abstract_inverted_index.Click-Through-Rate | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |