Differentially Private Synthesis and Sharing of Network Data Via Bayesian Exponential Random Graph Models Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1093/jssam/smac017
Network data often contain sensitive relational information. One approach to protecting sensitive information while offering flexibility for network analysis is to share synthesized networks based on the information in originally observed networks. We employ differential privacy (DP) and exponential random graph models (ERGMs) and propose the DP-ERGM method to synthesize network data. We apply DP-ERGM to two real-world networks. We then compare the utility of synthesized networks generated by DP-ERGM, the DyadWise Randomized Response (DWRR) approach, and the Synthesis through Conditional distribution of Edge given nodal Attribute (SCEA) approach. In general, the results suggest that DP-ERGM preserves the original information significantly better than two other approaches in network structural statistics and inference for ERGMs and latent space models. Furthermore, DP-ERGM satisfies node DP through modeling the global network structure with ERGM, a stronger notion of privacy than the edge DP under which DWRR and SCEA operate.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jssam/smac017
- OA Status
- green
- Cited By
- 3
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225818099
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225818099Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jssam/smac017Digital Object Identifier
- Title
-
Differentially Private Synthesis and Sharing of Network Data Via Bayesian Exponential Random Graph ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-29Full publication date if available
- Authors
-
Fang Liu, Evercita C. Eugenio, Ick Hoon Jin, Claire McKay BowenList of authors in order
- Landing page
-
https://doi.org/10.1093/jssam/smac017Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.osti.gov/biblio/1872498Direct OA link when available
- Concepts
-
Exponential random graph models, Inference, Computer science, Statistical inference, Exponential family, Bayesian network, Graph, Data mining, Theoretical computer science, Random graph, Artificial intelligence, Mathematics, Machine learning, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225818099 |
|---|---|
| doi | https://doi.org/10.1093/jssam/smac017 |
| ids.doi | https://doi.org/10.1093/jssam/smac017 |
| ids.openalex | https://openalex.org/W4225818099 |
| fwci | 0.58739646 |
| type | article |
| title | Differentially Private Synthesis and Sharing of Network Data Via Bayesian Exponential Random Graph Models |
| awards[0].id | https://openalex.org/G6568602748 |
| awards[0].funder_id | https://openalex.org/F4320338291 |
| awards[0].display_name | |
| awards[0].funder_award_id | SAND2022-3107J |
| awards[0].funder_display_name | Sandia National Laboratories |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 784 |
| biblio.first_page | 753 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9487000107765198 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T11716 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9458000063896179 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Random Matrices and Applications |
| funders[0].id | https://openalex.org/F4320338291 |
| funders[0].ror | https://ror.org/01apwpt12 |
| funders[0].display_name | Sandia National Laboratories |
| is_xpac | False |
| apc_list.value | 3635 |
| apc_list.currency | USD |
| apc_list.value_usd | 3635 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C30549945 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8608930110931396 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5421526 |
| concepts[0].display_name | Exponential random graph models |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6646980047225952 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6106133460998535 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C134261354 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46482139825820923 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[3].display_name | Statistical inference |
| concepts[4].id | https://openalex.org/C55974624 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4502229392528534 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1188504 |
| concepts[4].display_name | Exponential family |
| concepts[5].id | https://openalex.org/C33724603 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4351484477519989 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[5].display_name | Bayesian network |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.39069899916648865 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3879765272140503 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36756134033203125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C47458327 |
| concepts[9].level | 3 |
| concepts[9].score | 0.2665714621543884 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q910404 |
| concepts[9].display_name | Random graph |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24851655960083008 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.23837092518806458 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.22554999589920044 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16450583934783936 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/exponential-random-graph-models |
| keywords[0].score | 0.8608930110931396 |
| keywords[0].display_name | Exponential random graph models |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6646980047225952 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6106133460998535 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/statistical-inference |
| keywords[3].score | 0.46482139825820923 |
| keywords[3].display_name | Statistical inference |
| keywords[4].id | https://openalex.org/keywords/exponential-family |
| keywords[4].score | 0.4502229392528534 |
| keywords[4].display_name | Exponential family |
| keywords[5].id | https://openalex.org/keywords/bayesian-network |
| keywords[5].score | 0.4351484477519989 |
| keywords[5].display_name | Bayesian network |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.39069899916648865 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3879765272140503 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.36756134033203125 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/random-graph |
| keywords[9].score | 0.2665714621543884 |
| keywords[9].display_name | Random graph |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.24851655960083008 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.23837092518806458 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.22554999589920044 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.16450583934783936 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1093/jssam/smac017 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210204360 |
| locations[0].source.issn | 2325-0984, 2325-0992 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2325-0984 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Survey Statistics and Methodology |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Survey Statistics and Methodology |
| locations[0].landing_page_url | https://doi.org/10.1093/jssam/smac017 |
| locations[1].id | pmh:oai:osti.gov:1872498 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[1].source.host_organization | https://openalex.org/I139351228 |
| locations[1].source.host_organization_name | Office of Scientific and Technical Information |
| locations[1].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.osti.gov/biblio/1872498 |
| locations[2].id | pmh:oai:osti.gov:1883182 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1883182 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100453123 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3028-5927 |
| authorships[0].author.display_name | Fang Liu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ. of Notre Dame, IN (United States) |
| authorships[0].institutions[0].id | https://openalex.org/I107639228 |
| authorships[0].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Notre Dame |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Fang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ. of Notre Dame, IN (United States) |
| authorships[1].author.id | https://openalex.org/A5068966992 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0484-4580 |
| authorships[1].author.display_name | Evercita C. Eugenio |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I192454743 |
| authorships[1].affiliations[0].raw_affiliation_string | Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
| authorships[1].institutions[0].id | https://openalex.org/I192454743 |
| authorships[1].institutions[0].ror | https://ror.org/058m7ey48 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I1330989302, https://openalex.org/I192454743, https://openalex.org/I198811213, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Sandia National Laboratories California |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eugenio, Evercita C. |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sandia National Lab. (SNL-CA), Livermore, CA (United States) |
| authorships[2].author.id | https://openalex.org/A5043640771 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0647-5704 |
| authorships[2].author.display_name | Ick Hoon Jin |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[2].affiliations[0].raw_affiliation_string | Yonsei Univ., Seoul (Korea, Republic of) |
| authorships[2].institutions[0].id | https://openalex.org/I193775966 |
| authorships[2].institutions[0].ror | https://ror.org/01wjejq96 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193775966 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Yonsei University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jin, Ick Hoon |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Yonsei Univ., Seoul (Korea, Republic of) |
| authorships[3].author.id | https://openalex.org/A5052484574 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1020-3181 |
| authorships[3].author.display_name | Claire McKay Bowen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183320395 |
| authorships[3].affiliations[0].raw_affiliation_string | Urban Institute, Washington, DC (United States) |
| authorships[3].institutions[0].id | https://openalex.org/I183320395 |
| authorships[3].institutions[0].ror | https://ror.org/017pz3h73 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I183320395 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Urban Institute |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bowen, Claire Mckay |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Urban Institute, Washington, DC (United States) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.osti.gov/biblio/1872498 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Differentially Private Synthesis and Sharing of Network Data Via Bayesian Exponential Random Graph Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4297781239, https://openalex.org/W137830373, https://openalex.org/W3000984192, https://openalex.org/W1898880845, https://openalex.org/W2155910443, https://openalex.org/W4233848299, https://openalex.org/W2952641656, https://openalex.org/W2145067884, https://openalex.org/W2067856412, https://openalex.org/W4388876322 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:osti.gov:1872498 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402487 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| best_oa_location.source.host_organization | https://openalex.org/I139351228 |
| best_oa_location.source.host_organization_name | Office of Scientific and Technical Information |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I139351228 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://www.osti.gov/biblio/1872498 |
| primary_location.id | doi:10.1093/jssam/smac017 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210204360 |
| primary_location.source.issn | 2325-0984, 2325-0992 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2325-0984 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Survey Statistics and Methodology |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Survey Statistics and Methodology |
| primary_location.landing_page_url | https://doi.org/10.1093/jssam/smac017 |
| publication_date | 2022-03-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2111754130, https://openalex.org/W6738901250, https://openalex.org/W2146124716, https://openalex.org/W2323217484, https://openalex.org/W6657138077, https://openalex.org/W2520881573, https://openalex.org/W6600279023, https://openalex.org/W107938046, https://openalex.org/W4241491750, https://openalex.org/W2150797113, https://openalex.org/W2071321532, https://openalex.org/W2066459332, https://openalex.org/W2102907934, https://openalex.org/W2155910443, https://openalex.org/W2159009490, https://openalex.org/W2131533950, https://openalex.org/W6690470711, https://openalex.org/W2191146066, https://openalex.org/W2573228286, https://openalex.org/W2157446903, https://openalex.org/W2284973007, https://openalex.org/W2082734581, https://openalex.org/W6723178480, https://openalex.org/W2135838082, https://openalex.org/W2889871395, https://openalex.org/W2806927426, https://openalex.org/W3129153384, https://openalex.org/W2064938847, https://openalex.org/W6634392663, https://openalex.org/W2136676173, https://openalex.org/W2047002475, https://openalex.org/W2069412834, https://openalex.org/W2159024459, https://openalex.org/W6679290131, https://openalex.org/W3101413764, https://openalex.org/W4242666873, https://openalex.org/W3122751563, https://openalex.org/W2623059953, https://openalex.org/W3006663570, https://openalex.org/W2493854888, https://openalex.org/W3105437875, https://openalex.org/W7122978, https://openalex.org/W2027595342, https://openalex.org/W1573937741, https://openalex.org/W2963268509 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 132 |
| abstract_inverted_index.DP | 123, 140 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.We | 33, 53, 60 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 29, 107 |
| abstract_inverted_index.is | 20 |
| abstract_inverted_index.of | 65, 83, 135 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 10, 21, 49, 56 |
| abstract_inverted_index.One | 8 |
| abstract_inverted_index.and | 38, 44, 77, 111, 115, 144 |
| abstract_inverted_index.for | 17, 113 |
| abstract_inverted_index.the | 27, 46, 63, 71, 78, 92, 98, 126, 138 |
| abstract_inverted_index.two | 57, 104 |
| abstract_inverted_index.(DP) | 37 |
| abstract_inverted_index.DWRR | 143 |
| abstract_inverted_index.Edge | 84 |
| abstract_inverted_index.SCEA | 145 |
| abstract_inverted_index.data | 2 |
| abstract_inverted_index.edge | 139 |
| abstract_inverted_index.node | 122 |
| abstract_inverted_index.than | 103, 137 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.then | 61 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.ERGM, | 131 |
| abstract_inverted_index.ERGMs | 114 |
| abstract_inverted_index.apply | 54 |
| abstract_inverted_index.based | 25 |
| abstract_inverted_index.data. | 52 |
| abstract_inverted_index.given | 85 |
| abstract_inverted_index.graph | 41 |
| abstract_inverted_index.nodal | 86 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.other | 105 |
| abstract_inverted_index.share | 22 |
| abstract_inverted_index.space | 117 |
| abstract_inverted_index.under | 141 |
| abstract_inverted_index.which | 142 |
| abstract_inverted_index.while | 14 |
| abstract_inverted_index.(DWRR) | 75 |
| abstract_inverted_index.(SCEA) | 88 |
| abstract_inverted_index.better | 102 |
| abstract_inverted_index.employ | 34 |
| abstract_inverted_index.global | 127 |
| abstract_inverted_index.latent | 116 |
| abstract_inverted_index.method | 48 |
| abstract_inverted_index.models | 42 |
| abstract_inverted_index.notion | 134 |
| abstract_inverted_index.random | 40 |
| abstract_inverted_index.(ERGMs) | 43 |
| abstract_inverted_index.DP-ERGM | 47, 55, 96, 120 |
| abstract_inverted_index.Network | 1 |
| abstract_inverted_index.compare | 62 |
| abstract_inverted_index.contain | 4 |
| abstract_inverted_index.models. | 118 |
| abstract_inverted_index.network | 18, 51, 108, 128 |
| abstract_inverted_index.privacy | 36, 136 |
| abstract_inverted_index.propose | 45 |
| abstract_inverted_index.results | 93 |
| abstract_inverted_index.suggest | 94 |
| abstract_inverted_index.through | 80, 124 |
| abstract_inverted_index.utility | 64 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.DP-ERGM, | 70 |
| abstract_inverted_index.DyadWise | 72 |
| abstract_inverted_index.Response | 74 |
| abstract_inverted_index.analysis | 19 |
| abstract_inverted_index.approach | 9 |
| abstract_inverted_index.general, | 91 |
| abstract_inverted_index.modeling | 125 |
| abstract_inverted_index.networks | 24, 67 |
| abstract_inverted_index.observed | 31 |
| abstract_inverted_index.offering | 15 |
| abstract_inverted_index.operate. | 146 |
| abstract_inverted_index.original | 99 |
| abstract_inverted_index.stronger | 133 |
| abstract_inverted_index.Attribute | 87 |
| abstract_inverted_index.Synthesis | 79 |
| abstract_inverted_index.approach, | 76 |
| abstract_inverted_index.approach. | 89 |
| abstract_inverted_index.generated | 68 |
| abstract_inverted_index.inference | 112 |
| abstract_inverted_index.networks. | 32, 59 |
| abstract_inverted_index.preserves | 97 |
| abstract_inverted_index.satisfies | 121 |
| abstract_inverted_index.sensitive | 5, 12 |
| abstract_inverted_index.structure | 129 |
| abstract_inverted_index.Randomized | 73 |
| abstract_inverted_index.approaches | 106 |
| abstract_inverted_index.originally | 30 |
| abstract_inverted_index.protecting | 11 |
| abstract_inverted_index.real-world | 58 |
| abstract_inverted_index.relational | 6 |
| abstract_inverted_index.statistics | 110 |
| abstract_inverted_index.structural | 109 |
| abstract_inverted_index.synthesize | 50 |
| abstract_inverted_index.Conditional | 81 |
| abstract_inverted_index.exponential | 39 |
| abstract_inverted_index.flexibility | 16 |
| abstract_inverted_index.information | 13, 28, 100 |
| abstract_inverted_index.synthesized | 23, 66 |
| abstract_inverted_index.Furthermore, | 119 |
| abstract_inverted_index.differential | 35 |
| abstract_inverted_index.distribution | 82 |
| abstract_inverted_index.information. | 7 |
| abstract_inverted_index.significantly | 101 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.66970377 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |