Differentiating Tumor Recurrence and Pseudoprogression in Postoperative Gliomas Using Pseudo- continuous Arterial Spin Labeling (pCASL) Technique Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7561157/v1
Objective: To assess whether the pCASL technique and its radiomics features can enhance the differentiation between tumor recurrence (TR) and pseudoprogression (PsP) in postoperative glioma patients. Methods: A retrospective study of 120 postoperative glioma patients (WHO Grade 2–4) from Tongji Hospital, Wuhan, was conducted. MRI data, including T1WI, T2WI, T2FLAIR, contrast-enhanced T1WI, and pCASL, were analyzed. Final diagnoses of TR or PsP were confirmed through pathology or follow-up. Among the patients, 84 had recurrence, and 36 had PsP. Process the pCASL images to obtain the CBF parameter map, then perform N4 bias correction and normalization to obtain the rCBF parameter map. The lesion areas were outlined, and mean values for ROI were calculated. Statistical analysis included the Mann-Whitney U test and ROC curve analysis. Radiomics features were extracted from the rCBF maps. These features were then further selected and divided into training and testing sets. Machine learning models, including Support Vector Machine (SVM), logistic regression, random forest, and Gaussian Naive Bayes, were developed and subsequently validated. Results: The Mann-Whitney U test showed a significant difference in mean rCBF values between TR and PsP groups (P < 0.001). ROC analysis revealed an AUC of 0.879 (95% CI: 0.817–0.941), sensitivity of 0.846, specificity of 0.836, PPV of 0.859, and NPV of 0.821. After feature selection, seven radiomics features were retained. SVM yielded the best performance with an AUC of 0.971, sensitivity of 0.950, specificity of 0.813, PPV of 0.864, and NPV of 0.929. Conclusion: The pCASL sequence can effectively differentiate between TR and PsP in postoperative glioma patients, and combining its radiomic features can significantly improve the accuracy of discrimination.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7561157/v1
- https://www.researchsquare.com/article/rs-7561157/latest.pdf
- OA Status
- gold
- References
- 46
- OpenAlex ID
- https://openalex.org/W4414799921
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414799921Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7561157/v1Digital Object Identifier
- Title
-
Differentiating Tumor Recurrence and Pseudoprogression in Postoperative Gliomas Using Pseudo- continuous Arterial Spin Labeling (pCASL) TechniqueWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-03Full publication date if available
- Authors
-
Ping Liu, Yujie Chen, XinLei Ai, Weiyin Vivian Liu, Hongquan Zhu, Yu‐Jie Ding, Dong Liu, Tengfei Chao, Jiaxuan Zhang, Wenzhen ZhuList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7561157/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7561157/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7561157/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414799921 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7561157/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7561157/v1 |
| ids.openalex | https://openalex.org/W4414799921 |
| fwci | 0.0 |
| type | article |
| title | Differentiating Tumor Recurrence and Pseudoprogression in Postoperative Gliomas Using Pseudo- continuous Arterial Spin Labeling (pCASL) Technique |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T11885 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | MRI in cancer diagnosis |
| topics[2].id | https://openalex.org/T10378 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Advanced MRI Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7561157/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7561157/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7561157/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100782262 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0763-9291 |
| authorships[0].author.display_name | Ping Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peiquan Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5101627470 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0482-2496 |
| authorships[1].author.display_name | Yujie Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yujie Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5045261705 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | XinLei Ai |
| authorships[2].affiliations[0].raw_affiliation_string | CT Department of the Fifth Affiliated Hospital of Dali University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xudong Ai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CT Department of the Fifth Affiliated Hospital of Dali University |
| authorships[3].author.id | https://openalex.org/A5071294677 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7917-7612 |
| authorships[3].author.display_name | Weiyin Vivian Liu |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I189448455 |
| authorships[3].affiliations[0].raw_affiliation_string | MR Research, GE Healthcare |
| authorships[3].institutions[0].id | https://openalex.org/I189448455 |
| authorships[3].institutions[0].ror | https://ror.org/04gbh9b75 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1332737386, https://openalex.org/I189448455 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | General Electric (Spain) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weiyin Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MR Research, GE Healthcare |
| authorships[4].author.id | https://openalex.org/A5033086468 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0664-3253 |
| authorships[4].author.display_name | Hongquan Zhu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hongquan Zhu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5059511373 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9247-6932 |
| authorships[5].author.display_name | Yu‐Jie Ding |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yujie Ding |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[6].author.id | https://openalex.org/A5100407506 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0451-5979 |
| authorships[6].author.display_name | Dong Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[6].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[6].institutions[0].id | https://openalex.org/I47720641 |
| authorships[6].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dong Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[7].author.id | https://openalex.org/A5057629761 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2920-3915 |
| authorships[7].author.display_name | Tengfei Chao |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[7].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[7].institutions[0].id | https://openalex.org/I47720641 |
| authorships[7].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Tengfei Chao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[8].author.id | https://openalex.org/A5100628888 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2439-7607 |
| authorships[8].author.display_name | Jiaxuan Zhang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[8].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[8].institutions[0].id | https://openalex.org/I47720641 |
| authorships[8].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jiaxuan Zhang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[9].author.id | https://openalex.org/A5038313078 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6252-9450 |
| authorships[9].author.display_name | Wenzhen Zhu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[9].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[9].institutions[0].id | https://openalex.org/I47720641 |
| authorships[9].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Wenzhen Zhu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Huazhong University of Science and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7561157/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Differentiating Tumor Recurrence and Pseudoprogression in Postoperative Gliomas Using Pseudo- continuous Arterial Spin Labeling (pCASL) Technique |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7561157/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7561157/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7561157/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7561157/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7561157/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7561157/v1 |
| publication_date | 2025-10-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1973986864, https://openalex.org/W4301595791, https://openalex.org/W4220881837, https://openalex.org/W3008041853, https://openalex.org/W4200083089, https://openalex.org/W2883592798, https://openalex.org/W4214855379, https://openalex.org/W3137406939, https://openalex.org/W2907085975, https://openalex.org/W2002071256, https://openalex.org/W4291016309, https://openalex.org/W3001553958, https://openalex.org/W2774485703, https://openalex.org/W2585783423, https://openalex.org/W3014661257, https://openalex.org/W2128739912, https://openalex.org/W2097475056, https://openalex.org/W2890238129, https://openalex.org/W3080728383, https://openalex.org/W2231056033, https://openalex.org/W2887482411, https://openalex.org/W2771506517, https://openalex.org/W1968025816, https://openalex.org/W2604221352, https://openalex.org/W4387163062, https://openalex.org/W4313237241, https://openalex.org/W4224433969, https://openalex.org/W2117340355, https://openalex.org/W2519302131, https://openalex.org/W2168880066, https://openalex.org/W2339554019, https://openalex.org/W2789743898, https://openalex.org/W3016156567, https://openalex.org/W2165880691, https://openalex.org/W2418889654, https://openalex.org/W3126172313, https://openalex.org/W2593808165, https://openalex.org/W2899287920, https://openalex.org/W3118247837, https://openalex.org/W2897449417, https://openalex.org/W4285028657, https://openalex.org/W3127029030, https://openalex.org/W1773336933, https://openalex.org/W2155510505, https://openalex.org/W2124226277, https://openalex.org/W2980518883 |
| referenced_works_count | 46 |
| abstract_inverted_index.U | 119, 170 |
| abstract_inverted_index.a | 173 |
| abstract_inverted_index.(P | 185 |
| abstract_inverted_index.36 | 76 |
| abstract_inverted_index.84 | 72 |
| abstract_inverted_index.N4 | 91 |
| abstract_inverted_index.TR | 60, 181, 250 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.an | 191, 225 |
| abstract_inverted_index.in | 23, 176, 253 |
| abstract_inverted_index.of | 31, 59, 193, 199, 202, 205, 209, 227, 230, 233, 236, 240, 267 |
| abstract_inverted_index.or | 61, 67 |
| abstract_inverted_index.to | 83, 96 |
| abstract_inverted_index.120 | 32 |
| abstract_inverted_index.AUC | 192, 226 |
| abstract_inverted_index.CBF | 86 |
| abstract_inverted_index.CI: | 196 |
| abstract_inverted_index.MRI | 45 |
| abstract_inverted_index.NPV | 208, 239 |
| abstract_inverted_index.PPV | 204, 235 |
| abstract_inverted_index.PsP | 62, 183, 252 |
| abstract_inverted_index.ROC | 122, 188 |
| abstract_inverted_index.ROI | 111 |
| abstract_inverted_index.SVM | 219 |
| abstract_inverted_index.The | 102, 243 |
| abstract_inverted_index.and | 8, 20, 53, 75, 94, 107, 121, 139, 143, 158, 164, 182, 207, 238, 251, 257 |
| abstract_inverted_index.can | 12, 246, 262 |
| abstract_inverted_index.for | 110 |
| abstract_inverted_index.had | 73, 77 |
| abstract_inverted_index.its | 9, 259 |
| abstract_inverted_index.the | 5, 14, 70, 80, 85, 98, 117, 130, 221, 265 |
| abstract_inverted_index.was | 43 |
| abstract_inverted_index.< | 186 |
| abstract_inverted_index.(95% | 195 |
| abstract_inverted_index.(TR) | 19 |
| abstract_inverted_index.(WHO | 36 |
| abstract_inverted_index.PsP. | 78 |
| abstract_inverted_index.best | 222 |
| abstract_inverted_index.bias | 92 |
| abstract_inverted_index.from | 39, 129 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.map, | 88 |
| abstract_inverted_index.map. | 101 |
| abstract_inverted_index.mean | 108, 177 |
| abstract_inverted_index.rCBF | 99, 131, 178 |
| abstract_inverted_index.test | 120, 171 |
| abstract_inverted_index.then | 89, 136 |
| abstract_inverted_index.were | 55, 63, 105, 112, 127, 135, 162, 217 |
| abstract_inverted_index.with | 224 |
| abstract_inverted_index.(PsP) | 22 |
| abstract_inverted_index.0.879 | 194 |
| abstract_inverted_index.After | 211 |
| abstract_inverted_index.Among | 69 |
| abstract_inverted_index.Final | 57 |
| abstract_inverted_index.Grade | 37 |
| abstract_inverted_index.Naive | 160 |
| abstract_inverted_index.T1WI, | 48, 52 |
| abstract_inverted_index.T2WI, | 49 |
| abstract_inverted_index.These | 133 |
| abstract_inverted_index.areas | 104 |
| abstract_inverted_index.curve | 123 |
| abstract_inverted_index.data, | 46 |
| abstract_inverted_index.maps. | 132 |
| abstract_inverted_index.pCASL | 6, 81, 244 |
| abstract_inverted_index.sets. | 145 |
| abstract_inverted_index.seven | 214 |
| abstract_inverted_index.study | 30 |
| abstract_inverted_index.tumor | 17 |
| abstract_inverted_index.(SVM), | 153 |
| abstract_inverted_index.0.813, | 234 |
| abstract_inverted_index.0.821. | 210 |
| abstract_inverted_index.0.836, | 203 |
| abstract_inverted_index.0.846, | 200 |
| abstract_inverted_index.0.859, | 206 |
| abstract_inverted_index.0.864, | 237 |
| abstract_inverted_index.0.929. | 241 |
| abstract_inverted_index.0.950, | 231 |
| abstract_inverted_index.0.971, | 228 |
| abstract_inverted_index.2–4) | 38 |
| abstract_inverted_index.Bayes, | 161 |
| abstract_inverted_index.Tongji | 40 |
| abstract_inverted_index.Vector | 151 |
| abstract_inverted_index.Wuhan, | 42 |
| abstract_inverted_index.assess | 3 |
| abstract_inverted_index.glioma | 25, 34, 255 |
| abstract_inverted_index.groups | 184 |
| abstract_inverted_index.images | 82 |
| abstract_inverted_index.lesion | 103 |
| abstract_inverted_index.obtain | 84, 97 |
| abstract_inverted_index.pCASL, | 54 |
| abstract_inverted_index.random | 156 |
| abstract_inverted_index.showed | 172 |
| abstract_inverted_index.values | 109, 179 |
| abstract_inverted_index.0.001). | 187 |
| abstract_inverted_index.Machine | 146, 152 |
| abstract_inverted_index.Process | 79 |
| abstract_inverted_index.Support | 150 |
| abstract_inverted_index.between | 16, 180, 249 |
| abstract_inverted_index.divided | 140 |
| abstract_inverted_index.enhance | 13 |
| abstract_inverted_index.feature | 212 |
| abstract_inverted_index.forest, | 157 |
| abstract_inverted_index.further | 137 |
| abstract_inverted_index.improve | 264 |
| abstract_inverted_index.models, | 148 |
| abstract_inverted_index.perform | 90 |
| abstract_inverted_index.testing | 144 |
| abstract_inverted_index.through | 65 |
| abstract_inverted_index.whether | 4 |
| abstract_inverted_index.yielded | 220 |
| abstract_inverted_index.</bold>A | 28 |
| abstract_inverted_index.Gaussian | 159 |
| abstract_inverted_index.T2FLAIR, | 50 |
| abstract_inverted_index.accuracy | 266 |
| abstract_inverted_index.analysis | 115, 189 |
| abstract_inverted_index.features | 11, 126, 134, 216, 261 |
| abstract_inverted_index.included | 116 |
| abstract_inverted_index.learning | 147 |
| abstract_inverted_index.logistic | 154 |
| abstract_inverted_index.patients | 35 |
| abstract_inverted_index.radiomic | 260 |
| abstract_inverted_index.revealed | 190 |
| abstract_inverted_index.selected | 138 |
| abstract_inverted_index.sequence | 245 |
| abstract_inverted_index.training | 142 |
| abstract_inverted_index.Hospital, | 41 |
| abstract_inverted_index.Radiomics | 125 |
| abstract_inverted_index.analysis. | 124 |
| abstract_inverted_index.analyzed. | 56 |
| abstract_inverted_index.combining | 258 |
| abstract_inverted_index.confirmed | 64 |
| abstract_inverted_index.developed | 163 |
| abstract_inverted_index.diagnoses | 58 |
| abstract_inverted_index.extracted | 128 |
| abstract_inverted_index.including | 47, 149 |
| abstract_inverted_index.outlined, | 106 |
| abstract_inverted_index.parameter | 87, 100 |
| abstract_inverted_index.pathology | 66 |
| abstract_inverted_index.patients, | 71, 256 |
| abstract_inverted_index.patients. | 26 |
| abstract_inverted_index.radiomics | 10, 215 |
| abstract_inverted_index.retained. | 218 |
| abstract_inverted_index.technique | 7 |
| abstract_inverted_index.</bold>The | 168 |
| abstract_inverted_index.conducted. | 44 |
| abstract_inverted_index.correction | 93 |
| abstract_inverted_index.difference | 175 |
| abstract_inverted_index.follow-up. | 68 |
| abstract_inverted_index.recurrence | 18 |
| abstract_inverted_index.selection, | 213 |
| abstract_inverted_index.validated. | 166 |
| abstract_inverted_index.Statistical | 114 |
| abstract_inverted_index.calculated. | 113 |
| abstract_inverted_index.effectively | 247 |
| abstract_inverted_index.performance | 223 |
| abstract_inverted_index.recurrence, | 74 |
| abstract_inverted_index.regression, | 155 |
| abstract_inverted_index.sensitivity | 198, 229 |
| abstract_inverted_index.significant | 174 |
| abstract_inverted_index.specificity | 201, 232 |
| abstract_inverted_index.Mann-Whitney | 118, 169 |
| abstract_inverted_index.subsequently | 165 |
| abstract_inverted_index.differentiate | 248 |
| abstract_inverted_index.normalization | 95 |
| abstract_inverted_index.postoperative | 24, 33, 254 |
| abstract_inverted_index.retrospective | 29 |
| abstract_inverted_index.significantly | 263 |
| abstract_inverted_index.<bold>Methods: | 27 |
| abstract_inverted_index.<bold>Results: | 167 |
| abstract_inverted_index.0.817–0.941), | 197 |
| abstract_inverted_index.differentiation | 15 |
| abstract_inverted_index.discrimination. | 268 |
| abstract_inverted_index.contrast-enhanced | 51 |
| abstract_inverted_index.pseudoprogression | 21 |
| abstract_inverted_index.<bold>Objective:</bold> | 1 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.<bold>Conclusion:</bold> | 242 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.62107388 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |