Diffusing States and Matching Scores: A New Framework for Imitation Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.13855
Adversarial Imitation Learning is traditionally framed as a two-player zero-sum game between a learner and an adversarially chosen cost function, and can therefore be thought of as the sequential generalization of a Generative Adversarial Network (GAN). However, in recent years, diffusion models have emerged as a non-adversarial alternative to GANs that merely require training a score function via regression, yet produce generations of higher quality. In response, we investigate how to lift insights from diffusion modeling to the sequential setting. We propose diffusing states and performing score-matching along diffused states to measure the discrepancy between the expert's and learner's states. Thus, our approach only requires training score functions to predict noises via standard regression, making it significantly easier and more stable to train than adversarial methods. Theoretically, we prove first- and second-order instance-dependent bounds with linear scaling in the horizon, proving that our approach avoids the compounding errors that stymie offline approaches to imitation learning. Empirically, we show our approach outperforms both GAN-style imitation learning baselines and discriminator-free imitation learning baselines across various continuous control problems, including complex tasks like controlling humanoids to walk, sit, crawl, and navigate through obstacles.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.13855
- https://arxiv.org/pdf/2410.13855
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403580245
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403580245Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.13855Digital Object Identifier
- Title
-
Diffusing States and Matching Scores: A New Framework for Imitation LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-17Full publication date if available
- Authors
-
Runzhe Wu, Yiding Chen, Gokul Swamy, Kianté Brantley, Wen SunList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.13855Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.13855Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.13855Direct OA link when available
- Concepts
-
Imitation, Matching (statistics), Statistical learning, Artificial intelligence, Psychology, Cognitive psychology, Econometrics, Computer science, Economics, Mathematics, Statistics, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403580245 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.13855 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.13855 |
| ids.openalex | https://openalex.org/W4403580245 |
| fwci | |
| type | preprint |
| title | Diffusing States and Matching Scores: A New Framework for Imitation Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8676999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126388530 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7475637793540955 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1131737 |
| concepts[0].display_name | Imitation |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6611840724945068 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C2982736386 |
| concepts[2].level | 2 |
| concepts[2].score | 0.43167075514793396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Statistical learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.40299057960510254 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3807288408279419 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C180747234 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3553776144981384 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[5].display_name | Cognitive psychology |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3433557152748108 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.33830511569976807 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.31922999024391174 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20478913187980652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17228427529335022 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C77805123 |
| concepts[11].level | 1 |
| concepts[11].score | 0.12780168652534485 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[11].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/imitation |
| keywords[0].score | 0.7475637793540955 |
| keywords[0].display_name | Imitation |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.6611840724945068 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/statistical-learning |
| keywords[2].score | 0.43167075514793396 |
| keywords[2].display_name | Statistical learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.40299057960510254 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3807288408279419 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[5].score | 0.3553776144981384 |
| keywords[5].display_name | Cognitive psychology |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.3433557152748108 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.33830511569976807 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/economics |
| keywords[8].score | 0.31922999024391174 |
| keywords[8].display_name | Economics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.20478913187980652 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.17228427529335022 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/social-psychology |
| keywords[11].score | 0.12780168652534485 |
| keywords[11].display_name | Social psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.13855 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.13855 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.13855 |
| locations[1].id | doi:10.48550/arxiv.2410.13855 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.13855 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062806503 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Runzhe Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Runzhe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006044524 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1759-9112 |
| authorships[1].author.display_name | Yiding Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Yiding |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111918435 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Gokul Swamy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Swamy, Gokul |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5022968100 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8395-594X |
| authorships[3].author.display_name | Kianté Brantley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Brantley, Kianté |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100949743 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wen Sun |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Sun, Wen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.13855 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diffusing States and Matching Scores: A New Framework for Imitation Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8676999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2935909890, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525, https://openalex.org/W2665305151 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.13855 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.13855 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.13855 |
| primary_location.id | pmh:oai:arXiv.org:2410.13855 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.13855 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.13855 |
| publication_date | 2024-10-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 12, 31, 45, 54 |
| abstract_inverted_index.In | 65 |
| abstract_inverted_index.We | 80 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.as | 6, 26, 44 |
| abstract_inverted_index.be | 23 |
| abstract_inverted_index.in | 37, 137 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 115 |
| abstract_inverted_index.of | 25, 30, 62 |
| abstract_inverted_index.to | 48, 70, 76, 90, 108, 121, 152, 182 |
| abstract_inverted_index.we | 67, 127, 156 |
| abstract_inverted_index.and | 14, 20, 84, 97, 118, 130, 166, 186 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.how | 69 |
| abstract_inverted_index.our | 101, 142, 158 |
| abstract_inverted_index.the | 27, 77, 92, 95, 138, 145 |
| abstract_inverted_index.via | 57, 111 |
| abstract_inverted_index.yet | 59 |
| abstract_inverted_index.GANs | 49 |
| abstract_inverted_index.both | 161 |
| abstract_inverted_index.cost | 18 |
| abstract_inverted_index.from | 73 |
| abstract_inverted_index.game | 10 |
| abstract_inverted_index.have | 42 |
| abstract_inverted_index.lift | 71 |
| abstract_inverted_index.like | 179 |
| abstract_inverted_index.more | 119 |
| abstract_inverted_index.only | 103 |
| abstract_inverted_index.show | 157 |
| abstract_inverted_index.sit, | 184 |
| abstract_inverted_index.than | 123 |
| abstract_inverted_index.that | 50, 141, 148 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.Thus, | 100 |
| abstract_inverted_index.along | 87 |
| abstract_inverted_index.prove | 128 |
| abstract_inverted_index.score | 55, 106 |
| abstract_inverted_index.tasks | 178 |
| abstract_inverted_index.train | 122 |
| abstract_inverted_index.walk, | 183 |
| abstract_inverted_index.(GAN). | 35 |
| abstract_inverted_index.across | 171 |
| abstract_inverted_index.avoids | 144 |
| abstract_inverted_index.bounds | 133 |
| abstract_inverted_index.chosen | 17 |
| abstract_inverted_index.crawl, | 185 |
| abstract_inverted_index.easier | 117 |
| abstract_inverted_index.errors | 147 |
| abstract_inverted_index.first- | 129 |
| abstract_inverted_index.framed | 5 |
| abstract_inverted_index.higher | 63 |
| abstract_inverted_index.linear | 135 |
| abstract_inverted_index.making | 114 |
| abstract_inverted_index.merely | 51 |
| abstract_inverted_index.models | 41 |
| abstract_inverted_index.noises | 110 |
| abstract_inverted_index.recent | 38 |
| abstract_inverted_index.stable | 120 |
| abstract_inverted_index.states | 83, 89 |
| abstract_inverted_index.stymie | 149 |
| abstract_inverted_index.years, | 39 |
| abstract_inverted_index.Network | 34 |
| abstract_inverted_index.between | 11, 94 |
| abstract_inverted_index.complex | 177 |
| abstract_inverted_index.control | 174 |
| abstract_inverted_index.emerged | 43 |
| abstract_inverted_index.learner | 13 |
| abstract_inverted_index.measure | 91 |
| abstract_inverted_index.offline | 150 |
| abstract_inverted_index.predict | 109 |
| abstract_inverted_index.produce | 60 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.proving | 140 |
| abstract_inverted_index.require | 52 |
| abstract_inverted_index.scaling | 136 |
| abstract_inverted_index.states. | 99 |
| abstract_inverted_index.thought | 24 |
| abstract_inverted_index.through | 188 |
| abstract_inverted_index.various | 172 |
| abstract_inverted_index.However, | 36 |
| abstract_inverted_index.Learning | 2 |
| abstract_inverted_index.approach | 102, 143, 159 |
| abstract_inverted_index.diffused | 88 |
| abstract_inverted_index.expert's | 96 |
| abstract_inverted_index.function | 56 |
| abstract_inverted_index.horizon, | 139 |
| abstract_inverted_index.insights | 72 |
| abstract_inverted_index.learning | 164, 169 |
| abstract_inverted_index.methods. | 125 |
| abstract_inverted_index.modeling | 75 |
| abstract_inverted_index.navigate | 187 |
| abstract_inverted_index.quality. | 64 |
| abstract_inverted_index.requires | 104 |
| abstract_inverted_index.setting. | 79 |
| abstract_inverted_index.standard | 112 |
| abstract_inverted_index.training | 53, 105 |
| abstract_inverted_index.zero-sum | 9 |
| abstract_inverted_index.GAN-style | 162 |
| abstract_inverted_index.Imitation | 1 |
| abstract_inverted_index.baselines | 165, 170 |
| abstract_inverted_index.diffusing | 82 |
| abstract_inverted_index.diffusion | 40, 74 |
| abstract_inverted_index.function, | 19 |
| abstract_inverted_index.functions | 107 |
| abstract_inverted_index.humanoids | 181 |
| abstract_inverted_index.imitation | 153, 163, 168 |
| abstract_inverted_index.including | 176 |
| abstract_inverted_index.learner's | 98 |
| abstract_inverted_index.learning. | 154 |
| abstract_inverted_index.problems, | 175 |
| abstract_inverted_index.response, | 66 |
| abstract_inverted_index.therefore | 22 |
| abstract_inverted_index.Generative | 32 |
| abstract_inverted_index.approaches | 151 |
| abstract_inverted_index.continuous | 173 |
| abstract_inverted_index.obstacles. | 189 |
| abstract_inverted_index.performing | 85 |
| abstract_inverted_index.sequential | 28, 78 |
| abstract_inverted_index.two-player | 8 |
| abstract_inverted_index.Adversarial | 0, 33 |
| abstract_inverted_index.adversarial | 124 |
| abstract_inverted_index.alternative | 47 |
| abstract_inverted_index.compounding | 146 |
| abstract_inverted_index.controlling | 180 |
| abstract_inverted_index.discrepancy | 93 |
| abstract_inverted_index.generations | 61 |
| abstract_inverted_index.investigate | 68 |
| abstract_inverted_index.outperforms | 160 |
| abstract_inverted_index.regression, | 58, 113 |
| abstract_inverted_index.Empirically, | 155 |
| abstract_inverted_index.second-order | 131 |
| abstract_inverted_index.adversarially | 16 |
| abstract_inverted_index.significantly | 116 |
| abstract_inverted_index.traditionally | 4 |
| abstract_inverted_index.Theoretically, | 126 |
| abstract_inverted_index.generalization | 29 |
| abstract_inverted_index.score-matching | 86 |
| abstract_inverted_index.non-adversarial | 46 |
| abstract_inverted_index.discriminator-free | 167 |
| abstract_inverted_index.instance-dependent | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |