Diffusion Learning with Partial Agent Participation and Local Updates Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.11307
Diffusion learning is a framework that endows edge devices with advanced intelligence. By processing and analyzing data locally and allowing each agent to communicate with its immediate neighbors, diffusion effectively protects the privacy of edge devices, enables real-time response, and reduces reliance on central servers. However, traditional diffusion learning relies on communication at every iteration, leading to communication overhead, especially with large learning models. Furthermore, the inherent volatility of edge devices, stemming from power outages or signal loss, poses challenges to reliable communication between neighboring agents. To mitigate these issues, this paper investigates an enhanced diffusion learning approach incorporating local updates and partial agent participation. Local updates will curtail communication frequency, while partial agent participation will allow for the inclusion of agents based on their availability. We prove that the resulting algorithm is stable in the mean-square error sense and provide a tight analysis of its Mean-Square-Deviation (MSD) performance. Various numerical experiments are conducted to illustrate our theoretical findings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.11307
- https://arxiv.org/pdf/2505.11307
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417094053
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417094053Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.11307Digital Object Identifier
- Title
-
Diffusion Learning with Partial Agent Participation and Local UpdatesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-16Full publication date if available
- Authors
-
Elsa Rizk, Kun Yuan, Ali H. SayedList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.11307Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.11307Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.11307Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417094053 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.11307 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.11307 |
| ids.openalex | https://openalex.org/W4417094053 |
| fwci | |
| type | preprint |
| title | Diffusion Learning with Partial Agent Participation and Local Updates |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.11307 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.11307 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.11307 |
| locations[1].id | doi:10.48550/arxiv.2505.11307 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.11307 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5040354724 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6902-2329 |
| authorships[0].author.display_name | Elsa Rizk |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rizk, Elsa |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100614598 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8394-8187 |
| authorships[1].author.display_name | Kun Yuan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuan, Kun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091103447 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5125-5519 |
| authorships[2].author.display_name | Ali H. Sayed |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sayed, Ali H. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.11307 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diffusion Learning with Partial Agent Participation and Local Updates |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T16:30:24.675874 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.11307 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.11307 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.11307 |
| primary_location.id | pmh:oai:arXiv.org:2505.11307 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.11307 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.11307 |
| publication_date | 2025-05-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 141 |
| abstract_inverted_index.By | 12 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.We | 126 |
| abstract_inverted_index.an | 93 |
| abstract_inverted_index.at | 52 |
| abstract_inverted_index.in | 134 |
| abstract_inverted_index.is | 2, 132 |
| abstract_inverted_index.of | 33, 68, 120, 144 |
| abstract_inverted_index.on | 42, 50, 123 |
| abstract_inverted_index.or | 75 |
| abstract_inverted_index.to | 22, 56, 80, 154 |
| abstract_inverted_index.and | 14, 18, 39, 101, 139 |
| abstract_inverted_index.are | 152 |
| abstract_inverted_index.for | 117 |
| abstract_inverted_index.its | 25, 145 |
| abstract_inverted_index.our | 156 |
| abstract_inverted_index.the | 31, 65, 118, 129, 135 |
| abstract_inverted_index.data | 16 |
| abstract_inverted_index.each | 20 |
| abstract_inverted_index.edge | 7, 34, 69 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.that | 5, 128 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.will | 107, 115 |
| abstract_inverted_index.with | 9, 24, 60 |
| abstract_inverted_index.(MSD) | 147 |
| abstract_inverted_index.Local | 105 |
| abstract_inverted_index.agent | 21, 103, 113 |
| abstract_inverted_index.allow | 116 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.error | 137 |
| abstract_inverted_index.every | 53 |
| abstract_inverted_index.large | 61 |
| abstract_inverted_index.local | 99 |
| abstract_inverted_index.loss, | 77 |
| abstract_inverted_index.paper | 91 |
| abstract_inverted_index.poses | 78 |
| abstract_inverted_index.power | 73 |
| abstract_inverted_index.prove | 127 |
| abstract_inverted_index.sense | 138 |
| abstract_inverted_index.their | 124 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.tight | 142 |
| abstract_inverted_index.while | 111 |
| abstract_inverted_index.agents | 121 |
| abstract_inverted_index.endows | 6 |
| abstract_inverted_index.relies | 49 |
| abstract_inverted_index.signal | 76 |
| abstract_inverted_index.stable | 133 |
| abstract_inverted_index.Various | 149 |
| abstract_inverted_index.agents. | 85 |
| abstract_inverted_index.between | 83 |
| abstract_inverted_index.central | 43 |
| abstract_inverted_index.curtail | 108 |
| abstract_inverted_index.devices | 8 |
| abstract_inverted_index.enables | 36 |
| abstract_inverted_index.issues, | 89 |
| abstract_inverted_index.leading | 55 |
| abstract_inverted_index.locally | 17 |
| abstract_inverted_index.models. | 63 |
| abstract_inverted_index.outages | 74 |
| abstract_inverted_index.partial | 102, 112 |
| abstract_inverted_index.privacy | 32 |
| abstract_inverted_index.provide | 140 |
| abstract_inverted_index.reduces | 40 |
| abstract_inverted_index.updates | 100, 106 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.advanced | 10 |
| abstract_inverted_index.allowing | 19 |
| abstract_inverted_index.analysis | 143 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.devices, | 35, 70 |
| abstract_inverted_index.enhanced | 94 |
| abstract_inverted_index.inherent | 66 |
| abstract_inverted_index.learning | 1, 48, 62, 96 |
| abstract_inverted_index.mitigate | 87 |
| abstract_inverted_index.protects | 30 |
| abstract_inverted_index.reliable | 81 |
| abstract_inverted_index.reliance | 41 |
| abstract_inverted_index.servers. | 44 |
| abstract_inverted_index.stemming | 71 |
| abstract_inverted_index.Diffusion | 0 |
| abstract_inverted_index.algorithm | 131 |
| abstract_inverted_index.analyzing | 15 |
| abstract_inverted_index.conducted | 153 |
| abstract_inverted_index.diffusion | 28, 47, 95 |
| abstract_inverted_index.findings. | 158 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.immediate | 26 |
| abstract_inverted_index.inclusion | 119 |
| abstract_inverted_index.numerical | 150 |
| abstract_inverted_index.overhead, | 58 |
| abstract_inverted_index.real-time | 37 |
| abstract_inverted_index.response, | 38 |
| abstract_inverted_index.resulting | 130 |
| abstract_inverted_index.challenges | 79 |
| abstract_inverted_index.especially | 59 |
| abstract_inverted_index.frequency, | 110 |
| abstract_inverted_index.illustrate | 155 |
| abstract_inverted_index.iteration, | 54 |
| abstract_inverted_index.neighbors, | 27 |
| abstract_inverted_index.processing | 13 |
| abstract_inverted_index.volatility | 67 |
| abstract_inverted_index.communicate | 23 |
| abstract_inverted_index.effectively | 29 |
| abstract_inverted_index.experiments | 151 |
| abstract_inverted_index.mean-square | 136 |
| abstract_inverted_index.neighboring | 84 |
| abstract_inverted_index.theoretical | 157 |
| abstract_inverted_index.traditional | 46 |
| abstract_inverted_index.Furthermore, | 64 |
| abstract_inverted_index.investigates | 92 |
| abstract_inverted_index.performance. | 148 |
| abstract_inverted_index.availability. | 125 |
| abstract_inverted_index.communication | 51, 57, 82, 109 |
| abstract_inverted_index.incorporating | 98 |
| abstract_inverted_index.intelligence. | 11 |
| abstract_inverted_index.participation | 114 |
| abstract_inverted_index.participation. | 104 |
| abstract_inverted_index.Mean-Square-Deviation | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |