Diffusion probabilistic priors for zero‐shot low‐dose CT image denoising Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/mp.17431
Background Denoising low‐dose computed tomography (CT) images is a critical task in medical image computing. Supervised deep learning‐based approaches have made significant advancements in this area in recent years. However, these methods typically require pairs of low‐dose and normal‐dose CT images for training, which are challenging to obtain in clinical settings. Existing unsupervised deep learning‐based methods often require training with a large number of low‐dose CT images or rely on specially designed data acquisition processes to obtain training data. Purpose To address these limitations, we propose a novel unsupervised method that only utilizes normal‐dose CT images during training, enabling zero‐shot denoising of low‐dose CT images. Methods Our method leverages the diffusion model, a powerful generative model. We begin by training a cascaded unconditional diffusion model capable of generating high‐quality normal‐dose CT images from low‐resolution to high‐resolution. The cascaded architecture makes the training of high‐resolution diffusion models more feasible. Subsequently, we introduce low‐dose CT images into the reverse process of the diffusion model as likelihood, combined with the priors provided by the diffusion model and iteratively solve multiple maximum a posteriori (MAP) problems to achieve denoising. Additionally, we propose methods to adaptively adjust the coefficients that balance the likelihood and prior in MAP estimations, allowing for adaptation to different noise levels in low‐dose CT images. Results We test our method on low‐dose CT datasets of different regions with varying dose levels. The results demonstrate that our method outperforms the state‐of‐the‐art unsupervised method and surpasses several supervised deep learning‐based methods. Our method achieves PSNR of 45.02 and 35.35 dB on the abdomen CT dataset and the chest CT dataset, respectively, surpassing the best unsupervised algorithm Noise2Sim in the comparative methods by 0.39 and 0.85 dB, respectively. Conclusions We propose a novel low‐dose CT image denoising method based on diffusion model. Our proposed method only requires normal‐dose CT images as training data, greatly alleviating the data scarcity issue faced by most deep learning‐based methods. At the same time, as an unsupervised algorithm, our method achieves very good qualitative and quantitative results. The Codes are available in https://github.com/DeepXuan/Dn‐Dp .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mp.17431
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431
- OA Status
- bronze
- Cited By
- 25
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403464026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403464026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mp.17431Digital Object Identifier
- Title
-
Diffusion probabilistic priors for zero‐shot low‐dose CT image denoisingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Xuan Liu, Yaoqin Xie, Chenbin Liu, Jun Cheng, Songhui Diao, Shan Tan, Xiaokun LiangList of authors in order
- Landing page
-
https://doi.org/10.1002/mp.17431Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431Direct OA link when available
- Concepts
-
Artificial intelligence, Maximum a posteriori estimation, Noise reduction, Prior probability, Computer science, Medical imaging, Noise (video), Pattern recognition (psychology), Computer vision, Iterative reconstruction, Image quality, Image (mathematics), Mathematics, Bayesian probability, Statistics, Maximum likelihoodTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403464026 |
|---|---|
| doi | https://doi.org/10.1002/mp.17431 |
| ids.doi | https://doi.org/10.1002/mp.17431 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39413369 |
| ids.openalex | https://openalex.org/W4403464026 |
| fwci | 20.47684545 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D014057 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Tomography, X-Ray Computed |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D007091 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Image Processing, Computer-Assisted |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D059629 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Signal-To-Noise Ratio |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011829 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Radiation Dosage |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D004058 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Diffusion |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D011336 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Probability |
| type | article |
| title | Diffusion probabilistic priors for zero‐shot low‐dose CT image denoising |
| awards[0].id | https://openalex.org/G5163237521 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | U21A20480 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G892528413 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62071197 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4941263551 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | U20A20373 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G1211651440 |
| awards[3].funder_id | https://openalex.org/F4320335777 |
| awards[3].display_name | |
| awards[3].funder_award_id | 2023YFC2411502 |
| awards[3].funder_display_name | National Key Research and Development Program of China |
| awards[4].id | https://openalex.org/G5121617026 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 82202954 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 52 |
| biblio.last_page | 345 |
| biblio.first_page | 329 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9797999858856201 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 3040 |
| apc_list.currency | USD |
| apc_list.value_usd | 3040 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.679490327835083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C9810830 |
| concepts[1].level | 3 |
| concepts[1].score | 0.67240309715271 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q635384 |
| concepts[1].display_name | Maximum a posteriori estimation |
| concepts[2].id | https://openalex.org/C163294075 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6683506965637207 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[2].display_name | Noise reduction |
| concepts[3].id | https://openalex.org/C177769412 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6334208846092224 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[3].display_name | Prior probability |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6282163262367249 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C31601959 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5351916551589966 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q931309 |
| concepts[5].display_name | Medical imaging |
| concepts[6].id | https://openalex.org/C99498987 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5132753849029541 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[6].display_name | Noise (video) |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4755246937274933 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4563771188259125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C141379421 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44118767976760864 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[9].display_name | Iterative reconstruction |
| concepts[10].id | https://openalex.org/C55020928 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4373346269130707 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3813865 |
| concepts[10].display_name | Image quality |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3227483928203583 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2651178240776062 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C107673813 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2545989155769348 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[13].display_name | Bayesian probability |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1290779709815979 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C49781872 |
| concepts[15].level | 2 |
| concepts[15].score | 0.10439759492874146 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[15].display_name | Maximum likelihood |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.679490327835083 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/maximum-a-posteriori-estimation |
| keywords[1].score | 0.67240309715271 |
| keywords[1].display_name | Maximum a posteriori estimation |
| keywords[2].id | https://openalex.org/keywords/noise-reduction |
| keywords[2].score | 0.6683506965637207 |
| keywords[2].display_name | Noise reduction |
| keywords[3].id | https://openalex.org/keywords/prior-probability |
| keywords[3].score | 0.6334208846092224 |
| keywords[3].display_name | Prior probability |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6282163262367249 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/medical-imaging |
| keywords[5].score | 0.5351916551589966 |
| keywords[5].display_name | Medical imaging |
| keywords[6].id | https://openalex.org/keywords/noise |
| keywords[6].score | 0.5132753849029541 |
| keywords[6].display_name | Noise (video) |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4755246937274933 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4563771188259125 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[9].score | 0.44118767976760864 |
| keywords[9].display_name | Iterative reconstruction |
| keywords[10].id | https://openalex.org/keywords/image-quality |
| keywords[10].score | 0.4373346269130707 |
| keywords[10].display_name | Image quality |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.3227483928203583 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2651178240776062 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/bayesian-probability |
| keywords[13].score | 0.2545989155769348 |
| keywords[13].display_name | Bayesian probability |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.1290779709815979 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[15].score | 0.10439759492874146 |
| keywords[15].display_name | Maximum likelihood |
| language | en |
| locations[0].id | doi:10.1002/mp.17431 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S95522064 |
| locations[0].source.issn | 0094-2405, 1522-8541, 2473-4209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-2405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/mp.17431 |
| locations[1].id | pmid:39413369 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39413369 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5001460897 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5370-937X |
| authorships[0].author.display_name | Xuan Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuan Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5086187557 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1412-2354 |
| authorships[1].author.display_name | Yaoqin Xie |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[1].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yaoqin Xie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[2].author.id | https://openalex.org/A5025580085 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2037-5630 |
| authorships[2].author.display_name | Chenbin Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[2].affiliations[0].raw_affiliation_string | Radiation Oncology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China |
| authorships[2].institutions[0].id | https://openalex.org/I200296433 |
| authorships[2].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenbin Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Radiation Oncology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China |
| authorships[3].author.id | https://openalex.org/A5065201436 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7771-2132 |
| authorships[3].author.display_name | Jun Cheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jun Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[4].author.id | https://openalex.org/A5068858100 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0971-8591 |
| authorships[4].author.display_name | Songhui Diao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Songhui Diao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[5].author.id | https://openalex.org/A5077232321 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9350-5128 |
| authorships[5].author.display_name | Shan Tan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shan Tan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China |
| authorships[6].author.id | https://openalex.org/A5056242195 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1207-5726 |
| authorships[6].author.display_name | Xiaokun Liang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[6].affiliations[0].raw_affiliation_string | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[6].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiaokun Liang |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Diffusion probabilistic priors for zero‐shot low‐dose CT image denoising |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2580650124, https://openalex.org/W4386190339, https://openalex.org/W2968424575, https://openalex.org/W3142333283, https://openalex.org/W1839961359, https://openalex.org/W2075146114, https://openalex.org/W2100805585, https://openalex.org/W1967979023, https://openalex.org/W2107692390, https://openalex.org/W2765479697 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1002/mp.17431 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S95522064 |
| best_oa_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-2405 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Medical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Medical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/mp.17431 |
| primary_location.id | doi:10.1002/mp.17431 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S95522064 |
| primary_location.source.issn | 0094-2405, 1522-8541, 2473-4209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-2405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mp.17431 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/mp.17431 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2063061288, https://openalex.org/W1964231221, https://openalex.org/W1972150100, https://openalex.org/W1980109723, https://openalex.org/W2584483805, https://openalex.org/W2002611249, https://openalex.org/W2574952845, https://openalex.org/W3098281398, https://openalex.org/W2949582758, https://openalex.org/W2743780012, https://openalex.org/W2748739903, https://openalex.org/W2972491395, https://openalex.org/W3203971980, https://openalex.org/W4322622372, https://openalex.org/W4307228491, https://openalex.org/W4287921490, https://openalex.org/W2171697262, https://openalex.org/W2319126251, https://openalex.org/W2141689871, https://openalex.org/W6681420801, https://openalex.org/W2082029374, https://openalex.org/W2997316188, https://openalex.org/W6772115628, https://openalex.org/W3045244891, https://openalex.org/W2980297198, https://openalex.org/W3034359211, https://openalex.org/W4312773500, https://openalex.org/W2972694114, https://openalex.org/W6779823529, https://openalex.org/W6602344735, https://openalex.org/W2962770929, https://openalex.org/W3175528029, https://openalex.org/W2083927153, https://openalex.org/W3155072588, https://openalex.org/W3134352583, https://openalex.org/W4391807321, https://openalex.org/W2054218460, https://openalex.org/W2056370875, https://openalex.org/W4281969232, https://openalex.org/W4390970420, https://openalex.org/W4386384751, https://openalex.org/W2172275395, https://openalex.org/W4241307704, https://openalex.org/W3168083301, https://openalex.org/W4386351464, https://openalex.org/W4287162267, https://openalex.org/W3036167779 |
| referenced_works_count | 47 |
| abstract_inverted_index.. | 345 |
| abstract_inverted_index.a | 9, 61, 87, 113, 121, 179, 288 |
| abstract_inverted_index.At | 322 |
| abstract_inverted_index.CT | 40, 66, 95, 104, 131, 153, 213, 222, 261, 266, 291, 305 |
| abstract_inverted_index.To | 81 |
| abstract_inverted_index.We | 117, 216, 286 |
| abstract_inverted_index.an | 327 |
| abstract_inverted_index.as | 163, 307, 326 |
| abstract_inverted_index.by | 119, 170, 279, 317 |
| abstract_inverted_index.dB | 257 |
| abstract_inverted_index.in | 12, 24, 27, 49, 201, 211, 275, 343 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 36, 64, 102, 127, 143, 159, 224, 253 |
| abstract_inverted_index.on | 70, 220, 258, 296 |
| abstract_inverted_index.or | 68 |
| abstract_inverted_index.to | 47, 76, 135, 183, 190, 207 |
| abstract_inverted_index.we | 85, 150, 187 |
| abstract_inverted_index.MAP | 202 |
| abstract_inverted_index.Our | 107, 249, 299 |
| abstract_inverted_index.The | 137, 231, 339 |
| abstract_inverted_index.and | 38, 174, 199, 242, 255, 263, 281, 336 |
| abstract_inverted_index.are | 45, 341 |
| abstract_inverted_index.dB, | 283 |
| abstract_inverted_index.for | 42, 205 |
| abstract_inverted_index.our | 218, 235, 330 |
| abstract_inverted_index.the | 110, 141, 156, 160, 167, 171, 193, 197, 238, 259, 264, 270, 276, 312, 323 |
| abstract_inverted_index.(CT) | 6 |
| abstract_inverted_index.0.39 | 280 |
| abstract_inverted_index.0.85 | 282 |
| abstract_inverted_index.PSNR | 252 |
| abstract_inverted_index.area | 26 |
| abstract_inverted_index.best | 271 |
| abstract_inverted_index.data | 73, 313 |
| abstract_inverted_index.deep | 17, 54, 246, 319 |
| abstract_inverted_index.dose | 229 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.good | 334 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.into | 155 |
| abstract_inverted_index.made | 21 |
| abstract_inverted_index.more | 147 |
| abstract_inverted_index.most | 318 |
| abstract_inverted_index.only | 92, 302 |
| abstract_inverted_index.rely | 69 |
| abstract_inverted_index.same | 324 |
| abstract_inverted_index.task | 11 |
| abstract_inverted_index.test | 217 |
| abstract_inverted_index.that | 91, 195, 234 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.very | 333 |
| abstract_inverted_index.with | 60, 166, 227 |
| abstract_inverted_index.(MAP) | 181 |
| abstract_inverted_index.35.35 | 256 |
| abstract_inverted_index.45.02 | 254 |
| abstract_inverted_index.Codes | 340 |
| abstract_inverted_index.based | 295 |
| abstract_inverted_index.begin | 118 |
| abstract_inverted_index.chest | 265 |
| abstract_inverted_index.data, | 309 |
| abstract_inverted_index.data. | 79 |
| abstract_inverted_index.faced | 316 |
| abstract_inverted_index.image | 14, 292 |
| abstract_inverted_index.issue | 315 |
| abstract_inverted_index.large | 62 |
| abstract_inverted_index.makes | 140 |
| abstract_inverted_index.model | 125, 162, 173 |
| abstract_inverted_index.noise | 209 |
| abstract_inverted_index.novel | 88, 289 |
| abstract_inverted_index.often | 57 |
| abstract_inverted_index.pairs | 35 |
| abstract_inverted_index.prior | 200 |
| abstract_inverted_index.solve | 176 |
| abstract_inverted_index.these | 31, 83 |
| abstract_inverted_index.time, | 325 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.adjust | 192 |
| abstract_inverted_index.during | 97 |
| abstract_inverted_index.images | 7, 41, 67, 96, 132, 154, 306 |
| abstract_inverted_index.levels | 210 |
| abstract_inverted_index.method | 90, 108, 219, 236, 241, 250, 294, 301, 331 |
| abstract_inverted_index.model, | 112 |
| abstract_inverted_index.model. | 116, 298 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.number | 63 |
| abstract_inverted_index.obtain | 48, 77 |
| abstract_inverted_index.priors | 168 |
| abstract_inverted_index.recent | 28 |
| abstract_inverted_index.years. | 29 |
| abstract_inverted_index.Methods | 106 |
| abstract_inverted_index.Purpose | 80 |
| abstract_inverted_index.Results | 215 |
| abstract_inverted_index.abdomen | 260 |
| abstract_inverted_index.achieve | 184 |
| abstract_inverted_index.address | 82 |
| abstract_inverted_index.balance | 196 |
| abstract_inverted_index.capable | 126 |
| abstract_inverted_index.dataset | 262 |
| abstract_inverted_index.greatly | 310 |
| abstract_inverted_index.images. | 105, 214 |
| abstract_inverted_index.levels. | 230 |
| abstract_inverted_index.maximum | 178 |
| abstract_inverted_index.medical | 13 |
| abstract_inverted_index.methods | 32, 56, 189, 278 |
| abstract_inverted_index.process | 158 |
| abstract_inverted_index.propose | 86, 188, 287 |
| abstract_inverted_index.regions | 226 |
| abstract_inverted_index.require | 34, 58 |
| abstract_inverted_index.results | 232 |
| abstract_inverted_index.reverse | 157 |
| abstract_inverted_index.several | 244 |
| abstract_inverted_index.varying | 228 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Existing | 52 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.achieves | 251, 332 |
| abstract_inverted_index.allowing | 204 |
| abstract_inverted_index.cascaded | 122, 138 |
| abstract_inverted_index.clinical | 50 |
| abstract_inverted_index.combined | 165 |
| abstract_inverted_index.computed | 4 |
| abstract_inverted_index.critical | 10 |
| abstract_inverted_index.dataset, | 267 |
| abstract_inverted_index.datasets | 223 |
| abstract_inverted_index.designed | 72 |
| abstract_inverted_index.enabling | 99 |
| abstract_inverted_index.methods. | 248, 321 |
| abstract_inverted_index.multiple | 177 |
| abstract_inverted_index.powerful | 114 |
| abstract_inverted_index.problems | 182 |
| abstract_inverted_index.proposed | 300 |
| abstract_inverted_index.provided | 169 |
| abstract_inverted_index.requires | 303 |
| abstract_inverted_index.results. | 338 |
| abstract_inverted_index.scarcity | 314 |
| abstract_inverted_index.training | 59, 78, 120, 142, 308 |
| abstract_inverted_index.utilizes | 93 |
| abstract_inverted_index.Denoising | 2 |
| abstract_inverted_index.Noise2Sim | 274 |
| abstract_inverted_index.algorithm | 273 |
| abstract_inverted_index.available | 342 |
| abstract_inverted_index.denoising | 101, 293 |
| abstract_inverted_index.different | 208, 225 |
| abstract_inverted_index.diffusion | 111, 124, 145, 161, 172, 297 |
| abstract_inverted_index.feasible. | 148 |
| abstract_inverted_index.introduce | 151 |
| abstract_inverted_index.leverages | 109 |
| abstract_inverted_index.processes | 75 |
| abstract_inverted_index.settings. | 51 |
| abstract_inverted_index.specially | 71 |
| abstract_inverted_index.surpasses | 243 |
| abstract_inverted_index.training, | 43, 98 |
| abstract_inverted_index.typically | 33 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Supervised | 16 |
| abstract_inverted_index.adaptation | 206 |
| abstract_inverted_index.adaptively | 191 |
| abstract_inverted_index.algorithm, | 329 |
| abstract_inverted_index.approaches | 19 |
| abstract_inverted_index.computing. | 15 |
| abstract_inverted_index.denoising. | 185 |
| abstract_inverted_index.generating | 128 |
| abstract_inverted_index.generative | 115 |
| abstract_inverted_index.likelihood | 198 |
| abstract_inverted_index.low‐dose | 3, 37, 65, 103, 152, 212, 221, 290 |
| abstract_inverted_index.posteriori | 180 |
| abstract_inverted_index.supervised | 245 |
| abstract_inverted_index.surpassing | 269 |
| abstract_inverted_index.tomography | 5 |
| abstract_inverted_index.Conclusions | 285 |
| abstract_inverted_index.acquisition | 74 |
| abstract_inverted_index.alleviating | 311 |
| abstract_inverted_index.challenging | 46 |
| abstract_inverted_index.comparative | 277 |
| abstract_inverted_index.demonstrate | 233 |
| abstract_inverted_index.iteratively | 175 |
| abstract_inverted_index.likelihood, | 164 |
| abstract_inverted_index.outperforms | 237 |
| abstract_inverted_index.qualitative | 335 |
| abstract_inverted_index.significant | 22 |
| abstract_inverted_index.zero‐shot | 100 |
| abstract_inverted_index.advancements | 23 |
| abstract_inverted_index.architecture | 139 |
| abstract_inverted_index.coefficients | 194 |
| abstract_inverted_index.estimations, | 203 |
| abstract_inverted_index.limitations, | 84 |
| abstract_inverted_index.quantitative | 337 |
| abstract_inverted_index.unsupervised | 53, 89, 240, 272, 328 |
| abstract_inverted_index.Additionally, | 186 |
| abstract_inverted_index.Subsequently, | 149 |
| abstract_inverted_index.normal‐dose | 39, 94, 130, 304 |
| abstract_inverted_index.respectively, | 268 |
| abstract_inverted_index.respectively. | 284 |
| abstract_inverted_index.unconditional | 123 |
| abstract_inverted_index.high‐quality | 129 |
| abstract_inverted_index.learning‐based | 18, 55, 247, 320 |
| abstract_inverted_index.low‐resolution | 134 |
| abstract_inverted_index.high‐resolution | 144 |
| abstract_inverted_index.high‐resolution. | 136 |
| abstract_inverted_index.state‐of‐the‐art | 239 |
| abstract_inverted_index.https://github.com/DeepXuan/Dn‐Dp | 344 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5056242195 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| citation_normalized_percentile.value | 0.9925608 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |