DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2401.01659
Object detection models represented by YOLO series have been widely used and have achieved great results on the high quality datasets, but not all the working conditions are ideal. To settle down the problem of locating targets on low quality datasets, the existing methods either train a new object detection network, or need a large collection of low-quality datasets to train. However, we propose a framework in this paper and apply it on the YOLO models called DiffYOLO. Specifically, we extract feature maps from the denoising diffusion probabilistic models to enhance the well-trained models, which allows us fine-tune YOLO on high-quality datasets and test on low-quality datasets. The results proved this framework can not only prove the performance on noisy datasets, but also prove the detection results on high-quality test datasets. We will supplement more experiments later (with various datasets and network architectures).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2401.01659
- https://arxiv.org/pdf/2401.01659
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390601688
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390601688Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2401.01659Digital Object Identifier
- Title
-
DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-03Full publication date if available
- Authors
-
Yichen Liu, Huajian Zhang, Daqing GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2401.01659Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2401.01659Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2401.01659Direct OA link when available
- Concepts
-
Computer science, Probabilistic logic, Noise (video), Object (grammar), Feature (linguistics), Quality (philosophy), Data mining, Artificial intelligence, Object detection, Noise reduction, Machine learning, Pattern recognition (psychology), Image (mathematics), Philosophy, Linguistics, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390601688 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2401.01659 |
| ids.doi | https://doi.org/10.48550/arxiv.2401.01659 |
| ids.openalex | https://openalex.org/W4390601688 |
| fwci | |
| type | preprint |
| title | DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9941999912261963 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9883000254631042 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9830999970436096 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7660317420959473 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C49937458 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6329452991485596 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[1].display_name | Probabilistic logic |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6260936260223389 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.590408205986023 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5726723670959473 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C2779530757 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5565313696861267 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[5].display_name | Quality (philosophy) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5266841650009155 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5211367607116699 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4685664474964142 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C163294075 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4442817270755768 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[9].display_name | Noise reduction |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3999755084514618 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35862699151039124 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.13189926743507385 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7660317420959473 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[1].score | 0.6329452991485596 |
| keywords[1].display_name | Probabilistic logic |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.6260936260223389 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.590408205986023 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5726723670959473 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/quality |
| keywords[5].score | 0.5565313696861267 |
| keywords[5].display_name | Quality (philosophy) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.5266841650009155 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5211367607116699 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.4685664474964142 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/noise-reduction |
| keywords[9].score | 0.4442817270755768 |
| keywords[9].display_name | Noise reduction |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3999755084514618 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.35862699151039124 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.13189926743507385 |
| keywords[12].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2401.01659 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2401.01659 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2401.01659 |
| locations[1].id | doi:10.48550/arxiv.2401.01659 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2401.01659 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5104652204 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7499-443X |
| authorships[0].author.display_name | Yichen Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Yichen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031895128 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2445-6286 |
| authorships[1].author.display_name | Huajian Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Huajian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5080262801 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4690-211X |
| authorships[2].author.display_name | Daqing Gao |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gao, Daqing |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2401.01659 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9941999912261963 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2494523064, https://openalex.org/W2943623134, https://openalex.org/W2588219639, https://openalex.org/W2215759665, https://openalex.org/W2030292806, https://openalex.org/W2960358116, https://openalex.org/W4287727129, https://openalex.org/W3041172967, https://openalex.org/W4292830139, https://openalex.org/W4319309705 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2401.01659 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2401.01659 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2401.01659 |
| primary_location.id | pmh:oai:arXiv.org:2401.01659 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2401.01659 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2401.01659 |
| publication_date | 2024-01-03 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 53, 64 |
| abstract_inverted_index.To | 29 |
| abstract_inverted_index.We | 131 |
| abstract_inverted_index.by | 4 |
| abstract_inverted_index.in | 66 |
| abstract_inverted_index.it | 71 |
| abstract_inverted_index.of | 34, 56 |
| abstract_inverted_index.on | 16, 37, 72, 99, 104, 118, 127 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 59, 89 |
| abstract_inverted_index.us | 96 |
| abstract_inverted_index.we | 62, 79 |
| abstract_inverted_index.The | 107 |
| abstract_inverted_index.all | 23 |
| abstract_inverted_index.and | 11, 69, 102, 140 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.but | 21, 121 |
| abstract_inverted_index.can | 112 |
| abstract_inverted_index.low | 38 |
| abstract_inverted_index.new | 47 |
| abstract_inverted_index.not | 22, 113 |
| abstract_inverted_index.the | 17, 24, 32, 41, 73, 84, 91, 116, 124 |
| abstract_inverted_index.YOLO | 5, 74, 98 |
| abstract_inverted_index.also | 122 |
| abstract_inverted_index.been | 8 |
| abstract_inverted_index.down | 31 |
| abstract_inverted_index.from | 83 |
| abstract_inverted_index.have | 7, 12 |
| abstract_inverted_index.high | 18 |
| abstract_inverted_index.maps | 82 |
| abstract_inverted_index.more | 134 |
| abstract_inverted_index.need | 52 |
| abstract_inverted_index.only | 114 |
| abstract_inverted_index.test | 103, 129 |
| abstract_inverted_index.this | 67, 110 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.will | 132 |
| abstract_inverted_index.(with | 137 |
| abstract_inverted_index.apply | 70 |
| abstract_inverted_index.great | 14 |
| abstract_inverted_index.large | 54 |
| abstract_inverted_index.later | 136 |
| abstract_inverted_index.noisy | 119 |
| abstract_inverted_index.paper | 68 |
| abstract_inverted_index.prove | 115, 123 |
| abstract_inverted_index.train | 45 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.Object | 0 |
| abstract_inverted_index.allows | 95 |
| abstract_inverted_index.called | 76 |
| abstract_inverted_index.either | 44 |
| abstract_inverted_index.ideal. | 28 |
| abstract_inverted_index.models | 2, 75, 88 |
| abstract_inverted_index.object | 48 |
| abstract_inverted_index.proved | 109 |
| abstract_inverted_index.series | 6 |
| abstract_inverted_index.settle | 30 |
| abstract_inverted_index.train. | 60 |
| abstract_inverted_index.widely | 9 |
| abstract_inverted_index.enhance | 90 |
| abstract_inverted_index.extract | 80 |
| abstract_inverted_index.feature | 81 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.models, | 93 |
| abstract_inverted_index.network | 141 |
| abstract_inverted_index.problem | 33 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.quality | 19, 39 |
| abstract_inverted_index.results | 15, 108, 126 |
| abstract_inverted_index.targets | 36 |
| abstract_inverted_index.various | 138 |
| abstract_inverted_index.working | 25 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.achieved | 13 |
| abstract_inverted_index.datasets | 58, 101, 139 |
| abstract_inverted_index.existing | 42 |
| abstract_inverted_index.locating | 35 |
| abstract_inverted_index.network, | 50 |
| abstract_inverted_index.DiffYOLO. | 77 |
| abstract_inverted_index.datasets, | 20, 40, 120 |
| abstract_inverted_index.datasets. | 106, 130 |
| abstract_inverted_index.denoising | 85 |
| abstract_inverted_index.detection | 1, 49, 125 |
| abstract_inverted_index.diffusion | 86 |
| abstract_inverted_index.fine-tune | 97 |
| abstract_inverted_index.framework | 65, 111 |
| abstract_inverted_index.collection | 55 |
| abstract_inverted_index.conditions | 26 |
| abstract_inverted_index.supplement | 133 |
| abstract_inverted_index.experiments | 135 |
| abstract_inverted_index.low-quality | 57, 105 |
| abstract_inverted_index.performance | 117 |
| abstract_inverted_index.represented | 3 |
| abstract_inverted_index.high-quality | 100, 128 |
| abstract_inverted_index.well-trained | 92 |
| abstract_inverted_index.Specifically, | 78 |
| abstract_inverted_index.probabilistic | 87 |
| abstract_inverted_index.architectures). | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |