Digital Rebirth of Dongba Pattern: An Improved Active Contour Model for Pattern Contour Extraction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3534401
In response to the time-consuming and laborious problem of manually drawing elements in existing poster designs, this paper proposes a method for extracting the contours of Dongba patterns based on improved active contour model. The improved active contour method adds discrete wavelet transform for energy minimization. Moreover, the minimization formula assigns greater weight to foreground pixels. In addition, to prevent evolutionary instability during the iteration process, we employed an optimization process that is specifically designed to maintain clear contours along the edges of the pattern. Based on the established Dongba pattern dataset, the qualitative and quantitative analyses are conducted on the proposed method. The results indicate that the proposed improved active contour model has advantages in contour extraction visual quality and evaluation indicators compared to existing methods, demonstrating the effectiveness of the proposed method. Finally, based on the proposed pattern contour extraction method, the design innovation practice of Dongba cultural posters is completed from two aspects: pattern selection and transformation, artistic processing and poster design. The code is available at: https://github.com/jsluen/IACM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3534401
- OA Status
- gold
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406857414
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406857414Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3534401Digital Object Identifier
- Title
-
Digital Rebirth of Dongba Pattern: An Improved Active Contour Model for Pattern Contour ExtractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yuan Li, Tao Wu, Rongbing Fu, En LuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3534401Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3534401Direct OA link when available
- Concepts
-
Extraction (chemistry), Active contour model, Computer science, Contour line, Artificial intelligence, Computer vision, Pattern recognition (psychology), Geology, Image segmentation, Cartography, Image (mathematics), Geography, Chemistry, ChromatographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406857414 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3534401 |
| ids.doi | https://doi.org/10.1109/access.2025.3534401 |
| ids.openalex | https://openalex.org/W4406857414 |
| fwci | 0.0 |
| type | article |
| title | Digital Rebirth of Dongba Pattern: An Improved Active Contour Model for Pattern Contour Extraction |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 20819 |
| biblio.first_page | 20810 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9373999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C4725764 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5759586095809937 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[0].display_name | Extraction (chemistry) |
| concepts[1].id | https://openalex.org/C112353826 |
| concepts[1].level | 4 |
| concepts[1].score | 0.5719627141952515 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q127313 |
| concepts[1].display_name | Active contour model |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.526352047920227 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C86069527 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4762047529220581 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6653802 |
| concepts[3].display_name | Contour line |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4429929852485657 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4294775128364563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.40979617834091187 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3517867624759674 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C124504099 |
| concepts[8].level | 3 |
| concepts[8].score | 0.20327642560005188 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[8].display_name | Image segmentation |
| concepts[9].id | https://openalex.org/C58640448 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12331736087799072 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[9].display_name | Cartography |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.11945503950119019 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09536555409431458 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C43617362 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[13].display_name | Chromatography |
| keywords[0].id | https://openalex.org/keywords/extraction |
| keywords[0].score | 0.5759586095809937 |
| keywords[0].display_name | Extraction (chemistry) |
| keywords[1].id | https://openalex.org/keywords/active-contour-model |
| keywords[1].score | 0.5719627141952515 |
| keywords[1].display_name | Active contour model |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.526352047920227 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/contour-line |
| keywords[3].score | 0.4762047529220581 |
| keywords[3].display_name | Contour line |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4429929852485657 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.4294775128364563 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.40979617834091187 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.3517867624759674 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/image-segmentation |
| keywords[8].score | 0.20327642560005188 |
| keywords[8].display_name | Image segmentation |
| keywords[9].id | https://openalex.org/keywords/cartography |
| keywords[9].score | 0.12331736087799072 |
| keywords[9].display_name | Cartography |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.11945503950119019 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.09536555409431458 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3534401 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3534401 |
| locations[1].id | pmh:oai:doaj.org/article:e721afc74fcc4bfaaea919b9df693530 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 20810-20819 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e721afc74fcc4bfaaea919b9df693530 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100390903 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8479-3049 |
| authorships[0].author.display_name | Yuan Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Architecture and Design, China University of Mining and Technology, Xuzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Architecture and Design, China University of Mining and Technology, Xuzhou, China |
| authorships[1].author.id | https://openalex.org/A5115589949 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7125-3687 |
| authorships[1].author.display_name | Tao Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210098976 |
| authorships[1].affiliations[0].raw_affiliation_string | Weichai Lovol Intelligent Agricultural Technology CO., LTD, Weifang, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210098976 |
| authorships[1].institutions[0].ror | https://ror.org/00yyvv226 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210098976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Weichai Power (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Weichai Lovol Intelligent Agricultural Technology CO., LTD, Weifang, China |
| authorships[2].author.id | https://openalex.org/A5063941961 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-0135-2003 |
| authorships[2].author.display_name | Rongbing Fu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210098976 |
| authorships[2].affiliations[0].raw_affiliation_string | Weichai Lovol Intelligent Agricultural Technology CO., LTD, Weifang, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210098976 |
| authorships[2].institutions[0].ror | https://ror.org/00yyvv226 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210098976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Weichai Power (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rongbing Fu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Weichai Lovol Intelligent Agricultural Technology CO., LTD, Weifang, China |
| authorships[3].author.id | https://openalex.org/A5016586483 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7194-6894 |
| authorships[3].author.display_name | En Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I115592961 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Agricultural Engineering, Jiangsu University, Zhenjiang, China |
| authorships[3].institutions[0].id | https://openalex.org/I115592961 |
| authorships[3].institutions[0].ror | https://ror.org/03jc41j30 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I115592961 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangsu University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | En Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Agricultural Engineering, Jiangsu University, Zhenjiang, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3534401 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Digital Rebirth of Dongba Pattern: An Improved Active Contour Model for Pattern Contour Extraction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9373999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2387003628, https://openalex.org/W123102278, https://openalex.org/W2081609930, https://openalex.org/W2365596436, https://openalex.org/W163453029, https://openalex.org/W2083612662, https://openalex.org/W2128914210, https://openalex.org/W2980879967, https://openalex.org/W2013077238, https://openalex.org/W2375013257 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3534401 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3534401 |
| primary_location.id | doi:10.1109/access.2025.3534401 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3534401 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4399054852, https://openalex.org/W2357625826, https://openalex.org/W4403233613, https://openalex.org/W4205312222, https://openalex.org/W2771337939, https://openalex.org/W3136389567, https://openalex.org/W4361855172, https://openalex.org/W4401893860, https://openalex.org/W2560622558, https://openalex.org/W4206595855, https://openalex.org/W4387007863, https://openalex.org/W4402520003, https://openalex.org/W4321794875, https://openalex.org/W2116040950, https://openalex.org/W2159152281, https://openalex.org/W1979393293, https://openalex.org/W2009767800, https://openalex.org/W1971923777, https://openalex.org/W2952800390, https://openalex.org/W4240332041, https://openalex.org/W4378895320, https://openalex.org/W4396510017, https://openalex.org/W4394938971, https://openalex.org/W2019778763, https://openalex.org/W4239131715, https://openalex.org/W2132984323, https://openalex.org/W2129534965, https://openalex.org/W2133059825, https://openalex.org/W6710952557, https://openalex.org/W2086447102 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 19 |
| abstract_inverted_index.In | 0, 56 |
| abstract_inverted_index.an | 68 |
| abstract_inverted_index.in | 12, 115 |
| abstract_inverted_index.is | 72, 151, 167 |
| abstract_inverted_index.of | 8, 25, 82, 130, 147 |
| abstract_inverted_index.on | 29, 86, 99, 136 |
| abstract_inverted_index.to | 2, 53, 58, 75, 124 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index.The | 34, 103, 165 |
| abstract_inverted_index.and | 5, 94, 120, 158, 162 |
| abstract_inverted_index.are | 97 |
| abstract_inverted_index.at: | 169 |
| abstract_inverted_index.for | 21, 43 |
| abstract_inverted_index.has | 113 |
| abstract_inverted_index.the | 3, 23, 47, 63, 80, 83, 87, 92, 100, 107, 128, 131, 137, 143 |
| abstract_inverted_index.two | 154 |
| abstract_inverted_index.adds | 39 |
| abstract_inverted_index.code | 166 |
| abstract_inverted_index.from | 153 |
| abstract_inverted_index.that | 71, 106 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.Based | 85 |
| abstract_inverted_index.along | 79 |
| abstract_inverted_index.based | 28, 135 |
| abstract_inverted_index.clear | 77 |
| abstract_inverted_index.edges | 81 |
| abstract_inverted_index.model | 112 |
| abstract_inverted_index.paper | 17 |
| abstract_inverted_index.Dongba | 26, 89, 148 |
| abstract_inverted_index.active | 31, 36, 110 |
| abstract_inverted_index.design | 144 |
| abstract_inverted_index.during | 62 |
| abstract_inverted_index.energy | 44 |
| abstract_inverted_index.method | 20, 38 |
| abstract_inverted_index.model. | 33 |
| abstract_inverted_index.poster | 14, 163 |
| abstract_inverted_index.visual | 118 |
| abstract_inverted_index.weight | 52 |
| abstract_inverted_index.assigns | 50 |
| abstract_inverted_index.contour | 32, 37, 111, 116, 140 |
| abstract_inverted_index.design. | 164 |
| abstract_inverted_index.drawing | 10 |
| abstract_inverted_index.formula | 49 |
| abstract_inverted_index.greater | 51 |
| abstract_inverted_index.method, | 142 |
| abstract_inverted_index.method. | 102, 133 |
| abstract_inverted_index.pattern | 90, 139, 156 |
| abstract_inverted_index.pixels. | 55 |
| abstract_inverted_index.posters | 150 |
| abstract_inverted_index.prevent | 59 |
| abstract_inverted_index.problem | 7 |
| abstract_inverted_index.process | 70 |
| abstract_inverted_index.quality | 119 |
| abstract_inverted_index.results | 104 |
| abstract_inverted_index.wavelet | 41 |
| abstract_inverted_index.Finally, | 134 |
| abstract_inverted_index.analyses | 96 |
| abstract_inverted_index.artistic | 160 |
| abstract_inverted_index.aspects: | 155 |
| abstract_inverted_index.compared | 123 |
| abstract_inverted_index.contours | 24, 78 |
| abstract_inverted_index.cultural | 149 |
| abstract_inverted_index.dataset, | 91 |
| abstract_inverted_index.designed | 74 |
| abstract_inverted_index.designs, | 15 |
| abstract_inverted_index.discrete | 40 |
| abstract_inverted_index.elements | 11 |
| abstract_inverted_index.employed | 67 |
| abstract_inverted_index.existing | 13, 125 |
| abstract_inverted_index.improved | 30, 35, 109 |
| abstract_inverted_index.indicate | 105 |
| abstract_inverted_index.maintain | 76 |
| abstract_inverted_index.manually | 9 |
| abstract_inverted_index.methods, | 126 |
| abstract_inverted_index.pattern. | 84 |
| abstract_inverted_index.patterns | 27 |
| abstract_inverted_index.practice | 146 |
| abstract_inverted_index.process, | 65 |
| abstract_inverted_index.proposed | 101, 108, 132, 138 |
| abstract_inverted_index.proposes | 18 |
| abstract_inverted_index.response | 1 |
| abstract_inverted_index.Moreover, | 46 |
| abstract_inverted_index.addition, | 57 |
| abstract_inverted_index.available | 168 |
| abstract_inverted_index.completed | 152 |
| abstract_inverted_index.conducted | 98 |
| abstract_inverted_index.iteration | 64 |
| abstract_inverted_index.laborious | 6 |
| abstract_inverted_index.selection | 157 |
| abstract_inverted_index.transform | 42 |
| abstract_inverted_index.advantages | 114 |
| abstract_inverted_index.evaluation | 121 |
| abstract_inverted_index.extracting | 22 |
| abstract_inverted_index.extraction | 117, 141 |
| abstract_inverted_index.foreground | 54 |
| abstract_inverted_index.indicators | 122 |
| abstract_inverted_index.innovation | 145 |
| abstract_inverted_index.processing | 161 |
| abstract_inverted_index.established | 88 |
| abstract_inverted_index.instability | 61 |
| abstract_inverted_index.qualitative | 93 |
| abstract_inverted_index.evolutionary | 60 |
| abstract_inverted_index.minimization | 48 |
| abstract_inverted_index.optimization | 69 |
| abstract_inverted_index.quantitative | 95 |
| abstract_inverted_index.specifically | 73 |
| abstract_inverted_index.demonstrating | 127 |
| abstract_inverted_index.effectiveness | 129 |
| abstract_inverted_index.minimization. | 45 |
| abstract_inverted_index.time-consuming | 4 |
| abstract_inverted_index.transformation, | 159 |
| abstract_inverted_index.<uri>https://github.com/jsluen/IACM</uri>. | 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.02559223 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |