Digital Self-Interference Cancellation With Robust Multi-layered Total Least Mean Squares Adaptive Filters Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.03137
In simultaneous transmit and receive (STAR) wireless communications, digital self-interference (SI) cancellation is required before estimating the remote transmission (RT) channel. Considering the inherent connection between SI channel reconstruction and RT channel estimation, we propose a multi-layered M-estimate total least mean squares (m-MTLS) joint estimator to estimate both channels. In each layer, our proposed m-MTLS estimator first employs an M-estimate total least mean squares (MTLS) algorithm to eliminate residual SI from the received signal and give a new estimation of the RT channel. Then, it gives the final RT channel estimation based on the weighted sum of the estimation values obtained from each layer. Compared to traditional minimum mean square error (MMSE) estimator and single-layered MTLS estimator, it demonstrates that the m-MTLS estimator has better performance of normalized mean squared difference (NMSD). Besides, the simulation results also show the robustness of m-MTLS estimator even in scenarios where the local reference signal is contaminated with noise, and the received signal is impacted by strong impulse noise.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.03137
- https://arxiv.org/pdf/2308.03137
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385681560
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385681560Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.03137Digital Object Identifier
- Title
-
Digital Self-Interference Cancellation With Robust Multi-layered Total Least Mean Squares Adaptive FiltersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-06Full publication date if available
- Authors
-
Shiyu Song, Yanqun Tang, Xizhang Wei, Yu Zhou, Xianjie Lu, Zhengpeng Wang, Songhu GeList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.03137Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.03137Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.03137Direct OA link when available
- Concepts
-
Estimator, Minimum mean square error, Mean squared error, Robustness (evolution), Least mean squares filter, Algorithm, Impulse noise, Mathematics, Least-squares function approximation, Channel (broadcasting), Recursive least squares filter, Statistics, Computer science, Control theory (sociology), Adaptive filter, Telecommunications, Artificial intelligence, Biochemistry, Gene, Control (management), Chemistry, PixelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385681560 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.03137 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.03137 |
| ids.openalex | https://openalex.org/W4385681560 |
| fwci | |
| type | preprint |
| title | Digital Self-Interference Cancellation With Robust Multi-layered Total Least Mean Squares Adaptive Filters |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Full-Duplex Wireless Communications |
| topics[1].id | https://openalex.org/T11233 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9940000176429749 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Advanced Adaptive Filtering Techniques |
| topics[2].id | https://openalex.org/T12146 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9929999709129333 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Power Line Communications and Noise |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.792351484298706 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C90652560 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6771897077560425 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11091747 |
| concepts[1].display_name | Minimum mean square error |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6309898495674133 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6255701184272766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C32617633 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5482606291770935 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1426666 |
| concepts[4].display_name | Least mean squares filter |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5385855436325073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C127372701 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5148345828056335 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q16979398 |
| concepts[6].display_name | Impulse noise |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5015339851379395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C9936470 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4749436676502228 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6510405 |
| concepts[8].display_name | Least-squares function approximation |
| concepts[9].id | https://openalex.org/C127162648 |
| concepts[9].level | 2 |
| concepts[9].score | 0.431761771440506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[9].display_name | Channel (broadcasting) |
| concepts[10].id | https://openalex.org/C145249878 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4155321717262268 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2835868 |
| concepts[10].display_name | Recursive least squares filter |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33204978704452515 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3261457085609436 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C47446073 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3243027329444885 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[13].display_name | Control theory (sociology) |
| concepts[14].id | https://openalex.org/C102248274 |
| concepts[14].level | 2 |
| concepts[14].score | 0.26254186034202576 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q168388 |
| concepts[14].display_name | Adaptive filter |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1822168231010437 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.05692705512046814 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C55493867 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[17].display_name | Biochemistry |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C2775924081 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[19].display_name | Control (management) |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C160633673 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[21].display_name | Pixel |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.792351484298706 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/minimum-mean-square-error |
| keywords[1].score | 0.6771897077560425 |
| keywords[1].display_name | Minimum mean square error |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.6309898495674133 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6255701184272766 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/least-mean-squares-filter |
| keywords[4].score | 0.5482606291770935 |
| keywords[4].display_name | Least mean squares filter |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5385855436325073 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/impulse-noise |
| keywords[6].score | 0.5148345828056335 |
| keywords[6].display_name | Impulse noise |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.5015339851379395 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/least-squares-function-approximation |
| keywords[8].score | 0.4749436676502228 |
| keywords[8].display_name | Least-squares function approximation |
| keywords[9].id | https://openalex.org/keywords/channel |
| keywords[9].score | 0.431761771440506 |
| keywords[9].display_name | Channel (broadcasting) |
| keywords[10].id | https://openalex.org/keywords/recursive-least-squares-filter |
| keywords[10].score | 0.4155321717262268 |
| keywords[10].display_name | Recursive least squares filter |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.33204978704452515 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3261457085609436 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/control-theory |
| keywords[13].score | 0.3243027329444885 |
| keywords[13].display_name | Control theory (sociology) |
| keywords[14].id | https://openalex.org/keywords/adaptive-filter |
| keywords[14].score | 0.26254186034202576 |
| keywords[14].display_name | Adaptive filter |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.1822168231010437 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.05692705512046814 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.03137 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.03137 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.03137 |
| locations[1].id | doi:10.48550/arxiv.2308.03137 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.03137 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026781859 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8438-2277 |
| authorships[0].author.display_name | Shiyu Song |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Song, Shiyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001679117 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2803-1186 |
| authorships[1].author.display_name | Yanqun Tang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tang, Yanqun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101232163 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xizhang Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei, Xizhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101986556 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8376-3107 |
| authorships[3].author.display_name | Yu Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5102543280 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xianjie Lu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lu, Xianjie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5084097244 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7608-5942 |
| authorships[5].author.display_name | Zhengpeng Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang, Zhengpeng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5052628401 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1140-1673 |
| authorships[6].author.display_name | Songhu Ge |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ge, Songhu |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.03137 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-09T00:00:00 |
| display_name | Digital Self-Interference Cancellation With Robust Multi-layered Total Least Mean Squares Adaptive Filters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Full-Duplex Wireless Communications |
| related_works | https://openalex.org/W2081837274, https://openalex.org/W2185121463, https://openalex.org/W3134357585, https://openalex.org/W3040496336, https://openalex.org/W2114287788, https://openalex.org/W2144530466, https://openalex.org/W2356797312, https://openalex.org/W2355954699, https://openalex.org/W3120590413, https://openalex.org/W4242740646 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.03137 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.03137 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.03137 |
| primary_location.id | pmh:oai:arXiv.org:2308.03137 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.03137 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.03137 |
| publication_date | 2023-08-06 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 76 |
| abstract_inverted_index.In | 0, 49 |
| abstract_inverted_index.RT | 30, 81, 88 |
| abstract_inverted_index.SI | 26, 69 |
| abstract_inverted_index.an | 58 |
| abstract_inverted_index.by | 161 |
| abstract_inverted_index.in | 144 |
| abstract_inverted_index.is | 12, 151, 159 |
| abstract_inverted_index.it | 84, 117 |
| abstract_inverted_index.of | 79, 96, 126, 140 |
| abstract_inverted_index.on | 92 |
| abstract_inverted_index.to | 45, 66, 105 |
| abstract_inverted_index.we | 33 |
| abstract_inverted_index.and | 3, 29, 74, 113, 155 |
| abstract_inverted_index.has | 123 |
| abstract_inverted_index.new | 77 |
| abstract_inverted_index.our | 52 |
| abstract_inverted_index.sum | 95 |
| abstract_inverted_index.the | 16, 22, 71, 80, 86, 93, 97, 120, 133, 138, 147, 156 |
| abstract_inverted_index.(RT) | 19 |
| abstract_inverted_index.(SI) | 10 |
| abstract_inverted_index.MTLS | 115 |
| abstract_inverted_index.also | 136 |
| abstract_inverted_index.both | 47 |
| abstract_inverted_index.each | 50, 102 |
| abstract_inverted_index.even | 143 |
| abstract_inverted_index.from | 70, 101 |
| abstract_inverted_index.give | 75 |
| abstract_inverted_index.mean | 40, 62, 108, 128 |
| abstract_inverted_index.show | 137 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.with | 153 |
| abstract_inverted_index.Then, | 83 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.error | 110 |
| abstract_inverted_index.final | 87 |
| abstract_inverted_index.first | 56 |
| abstract_inverted_index.gives | 85 |
| abstract_inverted_index.joint | 43 |
| abstract_inverted_index.least | 39, 61 |
| abstract_inverted_index.local | 148 |
| abstract_inverted_index.total | 38, 60 |
| abstract_inverted_index.where | 146 |
| abstract_inverted_index.(MMSE) | 111 |
| abstract_inverted_index.(MTLS) | 64 |
| abstract_inverted_index.(STAR) | 5 |
| abstract_inverted_index.before | 14 |
| abstract_inverted_index.better | 124 |
| abstract_inverted_index.layer, | 51 |
| abstract_inverted_index.layer. | 103 |
| abstract_inverted_index.m-MTLS | 54, 121, 141 |
| abstract_inverted_index.noise, | 154 |
| abstract_inverted_index.noise. | 164 |
| abstract_inverted_index.remote | 17 |
| abstract_inverted_index.signal | 73, 150, 158 |
| abstract_inverted_index.square | 109 |
| abstract_inverted_index.strong | 162 |
| abstract_inverted_index.values | 99 |
| abstract_inverted_index.(NMSD). | 131 |
| abstract_inverted_index.between | 25 |
| abstract_inverted_index.channel | 27, 31, 89 |
| abstract_inverted_index.digital | 8 |
| abstract_inverted_index.employs | 57 |
| abstract_inverted_index.impulse | 163 |
| abstract_inverted_index.minimum | 107 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.receive | 4 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.squared | 129 |
| abstract_inverted_index.squares | 41, 63 |
| abstract_inverted_index.(m-MTLS) | 42 |
| abstract_inverted_index.Besides, | 132 |
| abstract_inverted_index.Compared | 104 |
| abstract_inverted_index.channel. | 20, 82 |
| abstract_inverted_index.estimate | 46 |
| abstract_inverted_index.impacted | 160 |
| abstract_inverted_index.inherent | 23 |
| abstract_inverted_index.obtained | 100 |
| abstract_inverted_index.proposed | 53 |
| abstract_inverted_index.received | 72, 157 |
| abstract_inverted_index.required | 13 |
| abstract_inverted_index.residual | 68 |
| abstract_inverted_index.transmit | 2 |
| abstract_inverted_index.weighted | 94 |
| abstract_inverted_index.wireless | 6 |
| abstract_inverted_index.algorithm | 65 |
| abstract_inverted_index.channels. | 48 |
| abstract_inverted_index.eliminate | 67 |
| abstract_inverted_index.estimator | 44, 55, 112, 122, 142 |
| abstract_inverted_index.reference | 149 |
| abstract_inverted_index.scenarios | 145 |
| abstract_inverted_index.M-estimate | 37, 59 |
| abstract_inverted_index.connection | 24 |
| abstract_inverted_index.difference | 130 |
| abstract_inverted_index.estimating | 15 |
| abstract_inverted_index.estimation | 78, 90, 98 |
| abstract_inverted_index.estimator, | 116 |
| abstract_inverted_index.normalized | 127 |
| abstract_inverted_index.robustness | 139 |
| abstract_inverted_index.simulation | 134 |
| abstract_inverted_index.Considering | 21 |
| abstract_inverted_index.estimation, | 32 |
| abstract_inverted_index.performance | 125 |
| abstract_inverted_index.traditional | 106 |
| abstract_inverted_index.cancellation | 11 |
| abstract_inverted_index.contaminated | 152 |
| abstract_inverted_index.demonstrates | 118 |
| abstract_inverted_index.simultaneous | 1 |
| abstract_inverted_index.transmission | 18 |
| abstract_inverted_index.multi-layered | 36 |
| abstract_inverted_index.reconstruction | 28 |
| abstract_inverted_index.single-layered | 114 |
| abstract_inverted_index.communications, | 7 |
| abstract_inverted_index.self-interference | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |