DIMA: DIffusing Motion Artifacts for Unsupervised Correction in Brain MRI Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3634749
Motion artifacts remain a significant challenge in Magnetic Resonance Imaging (MRI), compromising diagnostic quality and potentially leading to misdiagnoses or repeated scans. Existing deep learning approaches for motion artifact correction typically require paired motion-free and motion-affected images for training, which are rarely available in clinical settings. To overcome this requirement, we present DIMA (DIffusing Motion Artifacts), a novel framework that leverages diffusion models to enable unsupervised motion artifact correction in brain MRI. Our two-phase approach first trains a diffusion model on unpaired motion-affected images to learn the distribution of motion artifacts. This model then generates realistic motion artifacts on clean images, creating paired datasets suitable for supervised training of correction networks. Unlike existing methods, DIMA operates without requiring k-space manipulation or detailed knowledge of MRI sequence parameters, making it adaptable across different scanning protocols and hardware. Comprehensive evaluations across multiple datasets and anatomical planes demonstrate that our method achieves comparable performance to state-of-the-art supervised approaches while offering superior generalizability to real clinical data. DIMA represents a significant advancement in making motion artifact correction more accessible for routine clinical use, potentially reducing the need for repeat scans and improving diagnostic accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3634749
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4416366506
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416366506Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3634749Digital Object Identifier
- Title
-
DIMA: DIffusing Motion Artifacts for Unsupervised Correction in Brain MRI ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Paolo Angella, Fabrizio Ferrando, Paolo Traverso, Rosario Varriale, Vito Paolo Pastore, Matteo SantacesariaList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3634749Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3634749Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416366506 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3634749 |
| ids.doi | https://doi.org/10.1109/access.2025.3634749 |
| ids.openalex | https://openalex.org/W4416366506 |
| fwci | |
| type | article |
| title | DIMA: DIffusing Motion Artifacts for Unsupervised Correction in Brain MRI Images |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 198658 |
| biblio.first_page | 198649 |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3634749 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3634749 |
| locations[1].id | pmh:oai:arXiv.org:2504.06767 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://arxiv.org/pdf/2504.06767 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2504.06767 |
| locations[2].id | pmh:oai:doaj.org/article:c27451c905ea45b7be095b0568e5dcff |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Access, Vol 13, Pp 198649-198658 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/c27451c905ea45b7be095b0568e5dcff |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5116160648 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-1818-1945 |
| authorships[0].author.display_name | Paolo Angella |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[0].affiliations[0].raw_affiliation_string | MaLGa Center, DIMA, University of Genoa, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I83816512 |
| authorships[0].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Genoa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paolo Angella |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | MaLGa Center, DIMA, University of Genoa, Italy |
| authorships[1].author.id | https://openalex.org/A5119632588 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-3295-1702 |
| authorships[1].author.display_name | Fabrizio Ferrando |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210130470 |
| authorships[1].affiliations[0].raw_affiliation_string | Esaote S.p.A., Genoa, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I4210130470 |
| authorships[1].institutions[0].ror | https://ror.org/02vmgn461 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210130470 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | Esaote (Italy) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fabrizio Ferrando |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Esaote S.p.A., Genoa, Italy |
| authorships[2].author.id | https://openalex.org/A5039482178 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6301-0204 |
| authorships[2].author.display_name | Paolo Traverso |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210130470 |
| authorships[2].affiliations[0].raw_affiliation_string | Esaote S.p.A., Genoa, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I4210130470 |
| authorships[2].institutions[0].ror | https://ror.org/02vmgn461 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210130470 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Esaote (Italy) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paolo Traverso |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Esaote S.p.A., Genoa, Italy |
| authorships[3].author.id | https://openalex.org/A5119632587 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Rosario Varriale |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210130470 |
| authorships[3].affiliations[0].raw_affiliation_string | Esaote S.p.A., Genoa, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I4210130470 |
| authorships[3].institutions[0].ror | https://ror.org/02vmgn461 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210130470 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | Esaote (Italy) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rosario Varriale |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Esaote S.p.A., Genoa, Italy |
| authorships[4].author.id | https://openalex.org/A5073140566 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5827-5571 |
| authorships[4].author.display_name | Vito Paolo Pastore |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[4].affiliations[0].raw_affiliation_string | MaLGa Center, DIBRIS, University of Genoa, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I83816512 |
| authorships[4].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Genoa |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vito Paolo Pastore |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | MaLGa Center, DIBRIS, University of Genoa, Italy |
| authorships[5].author.id | https://openalex.org/A5003334194 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7257-604X |
| authorships[5].author.display_name | Matteo Santacesaria |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[5].affiliations[0].raw_affiliation_string | MaLGa Center, DIMA, University of Genoa, Italy |
| authorships[5].institutions[0].id | https://openalex.org/I83816512 |
| authorships[5].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | University of Genoa |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Matteo Santacesaria |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | MaLGa Center, DIMA, University of Genoa, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3634749 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | DIMA: DIffusing Motion Artifacts for Unsupervised Correction in Brain MRI Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:15:23.461730 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2025.3634749 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3634749 |
| primary_location.id | doi:10.1109/access.2025.3634749 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3634749 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 56, 77, 165 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.in | 6, 43, 69, 168 |
| abstract_inverted_index.it | 128 |
| abstract_inverted_index.of | 88, 108, 123 |
| abstract_inverted_index.on | 80, 98 |
| abstract_inverted_index.or | 19, 120 |
| abstract_inverted_index.to | 17, 63, 84, 151, 159 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.MRI | 124 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.and | 14, 34, 134, 141, 186 |
| abstract_inverted_index.are | 40 |
| abstract_inverted_index.for | 26, 37, 105, 175, 183 |
| abstract_inverted_index.our | 146 |
| abstract_inverted_index.the | 86, 181 |
| abstract_inverted_index.DIMA | 52, 114, 163 |
| abstract_inverted_index.MRI. | 71 |
| abstract_inverted_index.This | 91 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.need | 182 |
| abstract_inverted_index.real | 160 |
| abstract_inverted_index.that | 59, 145 |
| abstract_inverted_index.then | 93 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.use, | 178 |
| abstract_inverted_index.brain | 70 |
| abstract_inverted_index.clean | 99 |
| abstract_inverted_index.data. | 162 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.learn | 85 |
| abstract_inverted_index.model | 79, 92 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.scans | 185 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.while | 155 |
| abstract_inverted_index.(MRI), | 10 |
| abstract_inverted_index.Motion | 0, 54 |
| abstract_inverted_index.Unlike | 111 |
| abstract_inverted_index.across | 130, 138 |
| abstract_inverted_index.enable | 64 |
| abstract_inverted_index.images | 36, 83 |
| abstract_inverted_index.making | 127, 169 |
| abstract_inverted_index.method | 147 |
| abstract_inverted_index.models | 62 |
| abstract_inverted_index.motion | 27, 66, 89, 96, 170 |
| abstract_inverted_index.paired | 32, 102 |
| abstract_inverted_index.planes | 143 |
| abstract_inverted_index.rarely | 41 |
| abstract_inverted_index.remain | 2 |
| abstract_inverted_index.repeat | 184 |
| abstract_inverted_index.scans. | 21 |
| abstract_inverted_index.trains | 76 |
| abstract_inverted_index.Imaging | 9 |
| abstract_inverted_index.images, | 100 |
| abstract_inverted_index.k-space | 118 |
| abstract_inverted_index.leading | 16 |
| abstract_inverted_index.present | 51 |
| abstract_inverted_index.quality | 13 |
| abstract_inverted_index.require | 31 |
| abstract_inverted_index.routine | 176 |
| abstract_inverted_index.without | 116 |
| abstract_inverted_index.Existing | 22 |
| abstract_inverted_index.Magnetic | 7 |
| abstract_inverted_index.achieves | 148 |
| abstract_inverted_index.approach | 74 |
| abstract_inverted_index.artifact | 28, 67, 171 |
| abstract_inverted_index.clinical | 44, 161, 177 |
| abstract_inverted_index.creating | 101 |
| abstract_inverted_index.datasets | 103, 140 |
| abstract_inverted_index.detailed | 121 |
| abstract_inverted_index.existing | 112 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.methods, | 113 |
| abstract_inverted_index.multiple | 139 |
| abstract_inverted_index.offering | 156 |
| abstract_inverted_index.operates | 115 |
| abstract_inverted_index.overcome | 47 |
| abstract_inverted_index.reducing | 180 |
| abstract_inverted_index.repeated | 20 |
| abstract_inverted_index.scanning | 132 |
| abstract_inverted_index.sequence | 125 |
| abstract_inverted_index.suitable | 104 |
| abstract_inverted_index.superior | 157 |
| abstract_inverted_index.training | 107 |
| abstract_inverted_index.unpaired | 81 |
| abstract_inverted_index.Resonance | 8 |
| abstract_inverted_index.accuracy. | 189 |
| abstract_inverted_index.adaptable | 129 |
| abstract_inverted_index.artifacts | 1, 97 |
| abstract_inverted_index.available | 42 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.different | 131 |
| abstract_inverted_index.diffusion | 61, 78 |
| abstract_inverted_index.framework | 58 |
| abstract_inverted_index.generates | 94 |
| abstract_inverted_index.hardware. | 135 |
| abstract_inverted_index.improving | 187 |
| abstract_inverted_index.knowledge | 122 |
| abstract_inverted_index.leverages | 60 |
| abstract_inverted_index.networks. | 110 |
| abstract_inverted_index.protocols | 133 |
| abstract_inverted_index.realistic | 95 |
| abstract_inverted_index.requiring | 117 |
| abstract_inverted_index.settings. | 45 |
| abstract_inverted_index.training, | 38 |
| abstract_inverted_index.two-phase | 73 |
| abstract_inverted_index.typically | 30 |
| abstract_inverted_index.(DIffusing | 53 |
| abstract_inverted_index.accessible | 174 |
| abstract_inverted_index.anatomical | 142 |
| abstract_inverted_index.approaches | 25, 154 |
| abstract_inverted_index.artifacts. | 90 |
| abstract_inverted_index.comparable | 149 |
| abstract_inverted_index.correction | 29, 68, 109, 172 |
| abstract_inverted_index.diagnostic | 12, 188 |
| abstract_inverted_index.represents | 164 |
| abstract_inverted_index.supervised | 106, 153 |
| abstract_inverted_index.Artifacts), | 55 |
| abstract_inverted_index.advancement | 167 |
| abstract_inverted_index.demonstrate | 144 |
| abstract_inverted_index.evaluations | 137 |
| abstract_inverted_index.motion-free | 33 |
| abstract_inverted_index.parameters, | 126 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.potentially | 15, 179 |
| abstract_inverted_index.significant | 4, 166 |
| abstract_inverted_index.compromising | 11 |
| abstract_inverted_index.distribution | 87 |
| abstract_inverted_index.manipulation | 119 |
| abstract_inverted_index.misdiagnoses | 18 |
| abstract_inverted_index.requirement, | 49 |
| abstract_inverted_index.unsupervised | 65 |
| abstract_inverted_index.Comprehensive | 136 |
| abstract_inverted_index.motion-affected | 35, 82 |
| abstract_inverted_index.generalizability | 158 |
| abstract_inverted_index.state-of-the-art | 152 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |