Dimensional Analysis Article Swipe
Related Concepts
Dimensionless quantity
Mach number
Compressibility
Similarity (geometry)
Buckingham
Mathematics
Zero (linguistics)
Compressible flow
Mathematical analysis
Reynolds number
Physics
Mechanics
Computer science
Philosophy
Artificial intelligence
Turbulence
Linguistics
Image (mathematics)
Quantum mechanics
Michel Deville
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-04683-4_2
· OA: W4294732479
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-04683-4_2
· OA: W4294732479
Dimensional analysis based on the principle of dimensional invariance allows the introduction of dimensionless numbers, like the famous Reynolds number, via the application of the Vaschy–Buckingham theorem. Dynamic similarity and self-similarity are described. The analysis of the dimensionless compressible Navier–Stokes equations shows how the incompressible equations are recovered when the Mach number goes to zero. The nature of pressure in the compressible and incompressible cases is broadly discussed.
Related Topics
Finding more related topics…