Direct Marketing Campaign Response Analysis using Logistic Regression, CART and Support Vector Machines Article Swipe
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21275/sr21917102249
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403227863
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403227863Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21275/sr21917102249Digital Object Identifier
- Title
-
Direct Marketing Campaign Response Analysis using Logistic Regression, CART and Support Vector MachinesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-05Full publication date if available
- Authors
-
Ankit BansalList of authors in order
- Landing page
-
https://doi.org/10.21275/sr21917102249Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21275/sr21917102249Direct OA link when available
- Concepts
-
Cart, Logistic regression, Support vector machine, Regression analysis, Computer science, Statistics, Machine learning, Mathematics, Engineering, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403227863 |
|---|---|
| doi | https://doi.org/10.21275/sr21917102249 |
| ids.doi | https://doi.org/10.21275/sr21917102249 |
| ids.openalex | https://openalex.org/W4403227863 |
| fwci | 0.0 |
| type | article |
| title | Direct Marketing Campaign Response Analysis using Logistic Regression, CART and Support Vector Machines |
| biblio.issue | 9 |
| biblio.volume | 10 |
| biblio.last_page | 1813 |
| biblio.first_page | 1808 |
| topics[0].id | https://openalex.org/T12384 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9165999889373779 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1406 |
| topics[0].subfield.display_name | Marketing |
| topics[0].display_name | Customer churn and segmentation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777275308 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9407187700271606 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q234668 |
| concepts[0].display_name | Cart |
| concepts[1].id | https://openalex.org/C151956035 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6880512237548828 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[1].display_name | Logistic regression |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6293664574623108 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4351353347301483 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.43478915095329285 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33989524841308594 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3023582994937897 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.27129846811294556 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.21772074699401855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C78519656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[9].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/cart |
| keywords[0].score | 0.9407187700271606 |
| keywords[0].display_name | Cart |
| keywords[1].id | https://openalex.org/keywords/logistic-regression |
| keywords[1].score | 0.6880512237548828 |
| keywords[1].display_name | Logistic regression |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.6293664574623108 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.4351353347301483 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.43478915095329285 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.33989524841308594 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3023582994937897 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.27129846811294556 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.21772074699401855 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.21275/sr21917102249 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210240710 |
| locations[0].source.issn | 2319-7064 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2319-7064 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Science and Research (IJSR) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Science and Research (IJSR) |
| locations[0].landing_page_url | https://doi.org/10.21275/sr21917102249 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007770585 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4261-9752 |
| authorships[0].author.display_name | Ankit Bansal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ankit Bansal |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.21275/sr21917102249 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Direct Marketing Campaign Response Analysis using Logistic Regression, CART and Support Vector Machines |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12384 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9165999889373779 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1406 |
| primary_topic.subfield.display_name | Marketing |
| primary_topic.display_name | Customer churn and segmentation |
| related_works | https://openalex.org/W4400093351, https://openalex.org/W3193909393, https://openalex.org/W2322350723, https://openalex.org/W2618011907, https://openalex.org/W4226229889, https://openalex.org/W2945144341, https://openalex.org/W2974098477, https://openalex.org/W3126687991, https://openalex.org/W2258783214, https://openalex.org/W2955357180 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21275/sr21917102249 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210240710 |
| best_oa_location.source.issn | 2319-7064 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2319-7064 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Science and Research (IJSR) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Science and Research (IJSR) |
| best_oa_location.landing_page_url | https://doi.org/10.21275/sr21917102249 |
| primary_location.id | doi:10.21275/sr21917102249 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210240710 |
| primary_location.source.issn | 2319-7064 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2319-7064 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Science and Research (IJSR) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Science and Research (IJSR) |
| primary_location.landing_page_url | https://doi.org/10.21275/sr21917102249 |
| publication_date | 2021-09-05 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5007770585 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.36745018 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |