Direct tracking of multiple emitters based on the generalized labeled multi-Bernoulli filter Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.172296544.43397525/v1
This paper considers the problem of tracking a timevarying number of non-cooperative emitters based on singlechannel passive sensors, which is traditionally carried out via sequential processing, i.e., detection, measurement extraction and tracking. However, in such a framework, tracking performance is severely affected by the pre-processing steps especially in low signal-to-noise ratio (SNR) scenarios. To remedy this drawback, in this paper we develop an algorithm that directly performs tracking based on the received signals. The states of multiple emitters are represented by a labeled random finite set (LRFS), which is further modeled by a generalized labeled multi-Bernoulli (GLMB) density. A new likelihood model, which inherently exploits time difference of arrival (TDOA) of signals coming from different sensors, is proposed. Then, a new GLMB filter is derived to iteratively compute the posterior of multiple emitters. Moreover, an efficient implementation strategy is devised for the proposed algorithm and its performance is assessed via simulations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.172296544.43397525/v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401359949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401359949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.172296544.43397525/v1Digital Object Identifier
- Title
-
Direct tracking of multiple emitters based on the generalized labeled multi-Bernoulli filterWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-06Full publication date if available
- Authors
-
Yiqi Chen, Lin Gao, Luigi Chisci, Ping Wei, Huaguo Zhang, Alfonso FarinaList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.172296544.43397525/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36227/techrxiv.172296544.43397525/v1Direct OA link when available
- Concepts
-
Bernoulli's principle, Tracking (education), Filter (signal processing), Computer science, Control theory (sociology), Physics, Artificial intelligence, Psychology, Computer vision, Thermodynamics, Control (management), PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401359949 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| ids.doi | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| ids.openalex | https://openalex.org/W4401359949 |
| fwci | 0.0 |
| type | preprint |
| title | Direct tracking of multiple emitters based on the generalized labeled multi-Bernoulli filter |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14257 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9781000018119812 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Measurement and Detection Methods |
| topics[1].id | https://openalex.org/T12564 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9376000165939331 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Sensor Technology and Measurement Systems |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9151999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152361515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7685171365737915 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181328 |
| concepts[0].display_name | Bernoulli's principle |
| concepts[1].id | https://openalex.org/C2775936607 |
| concepts[1].level | 2 |
| concepts[1].score | 0.598930835723877 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[1].display_name | Tracking (education) |
| concepts[2].id | https://openalex.org/C106131492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.548796534538269 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[2].display_name | Filter (signal processing) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38313472270965576 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C47446073 |
| concepts[4].level | 3 |
| concepts[4].score | 0.33203601837158203 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[4].display_name | Control theory (sociology) |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2949904799461365 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2287757694721222 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11369821429252625 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09977295994758606 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C97355855 |
| concepts[9].level | 1 |
| concepts[9].score | 0.05941537022590637 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[9].display_name | Thermodynamics |
| concepts[10].id | https://openalex.org/C2775924081 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[10].display_name | Control (management) |
| concepts[11].id | https://openalex.org/C19417346 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[11].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/bernoullis-principle |
| keywords[0].score | 0.7685171365737915 |
| keywords[0].display_name | Bernoulli's principle |
| keywords[1].id | https://openalex.org/keywords/tracking |
| keywords[1].score | 0.598930835723877 |
| keywords[1].display_name | Tracking (education) |
| keywords[2].id | https://openalex.org/keywords/filter |
| keywords[2].score | 0.548796534538269 |
| keywords[2].display_name | Filter (signal processing) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.38313472270965576 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/control-theory |
| keywords[4].score | 0.33203601837158203 |
| keywords[4].display_name | Control theory (sociology) |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.2949904799461365 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2287757694721222 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.11369821429252625 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.09977295994758606 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/thermodynamics |
| keywords[9].score | 0.05941537022590637 |
| keywords[9].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.172296544.43397525/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061077907 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8587-2032 |
| authorships[0].author.display_name | Yiqi Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiqi Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002775930 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2871-9239 |
| authorships[1].author.display_name | Lin Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin Gao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050723190 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5049-3577 |
| authorships[2].author.display_name | Luigi Chisci |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Luigi Chisci |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5107852988 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ping Wei |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ping Wei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101687135 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-3891-5855 |
| authorships[4].author.display_name | Huaguo Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Huaguo Zhang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5045179998 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3247-2427 |
| authorships[5].author.display_name | Alfonso Farina |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Alfonso Farina |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Direct tracking of multiple emitters based on the generalized labeled multi-Bernoulli filter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14257 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9781000018119812 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Measurement and Detection Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W1619264321, https://openalex.org/W2358668433, https://openalex.org/W2249919526, https://openalex.org/W2791968570, https://openalex.org/W2215635302, https://openalex.org/W1570633076, https://openalex.org/W3011535717 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36227/techrxiv.172296544.43397525/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| primary_location.id | doi:10.36227/techrxiv.172296544.43397525/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.172296544.43397525/v1 |
| publication_date | 2024-08-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 98 |
| abstract_inverted_index.a | 7, 35, 81, 92, 119 |
| abstract_inverted_index.To | 53 |
| abstract_inverted_index.an | 62, 134 |
| abstract_inverted_index.by | 42, 80, 91 |
| abstract_inverted_index.in | 33, 47, 57 |
| abstract_inverted_index.is | 19, 39, 88, 116, 123, 138, 147 |
| abstract_inverted_index.of | 5, 10, 75, 107, 110, 130 |
| abstract_inverted_index.on | 14, 69 |
| abstract_inverted_index.to | 125 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.and | 30, 144 |
| abstract_inverted_index.are | 78 |
| abstract_inverted_index.for | 140 |
| abstract_inverted_index.its | 145 |
| abstract_inverted_index.low | 48 |
| abstract_inverted_index.new | 99, 120 |
| abstract_inverted_index.out | 22 |
| abstract_inverted_index.set | 85 |
| abstract_inverted_index.the | 3, 43, 70, 128, 141 |
| abstract_inverted_index.via | 23, 149 |
| abstract_inverted_index.GLMB | 121 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.this | 55, 58 |
| abstract_inverted_index.time | 105 |
| abstract_inverted_index.(SNR) | 51 |
| abstract_inverted_index.Then, | 118 |
| abstract_inverted_index.based | 13, 68 |
| abstract_inverted_index.i.e., | 26 |
| abstract_inverted_index.paper | 1, 59 |
| abstract_inverted_index.ratio | 50 |
| abstract_inverted_index.steps | 45 |
| abstract_inverted_index.which | 18, 87, 102 |
| abstract_inverted_index.(GLMB) | 96 |
| abstract_inverted_index.(TDOA) | 109 |
| abstract_inverted_index.coming | 112 |
| abstract_inverted_index.filter | 122 |
| abstract_inverted_index.finite | 84 |
| abstract_inverted_index.model, | 101 |
| abstract_inverted_index.number | 9 |
| abstract_inverted_index.random | 83 |
| abstract_inverted_index.remedy | 54 |
| abstract_inverted_index.states | 74 |
| abstract_inverted_index.(LRFS), | 86 |
| abstract_inverted_index.arrival | 108 |
| abstract_inverted_index.carried | 21 |
| abstract_inverted_index.compute | 127 |
| abstract_inverted_index.derived | 124 |
| abstract_inverted_index.develop | 61 |
| abstract_inverted_index.devised | 139 |
| abstract_inverted_index.further | 89 |
| abstract_inverted_index.labeled | 82, 94 |
| abstract_inverted_index.modeled | 90 |
| abstract_inverted_index.passive | 16 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.signals | 111 |
| abstract_inverted_index.However, | 32 |
| abstract_inverted_index.affected | 41 |
| abstract_inverted_index.assessed | 148 |
| abstract_inverted_index.density. | 97 |
| abstract_inverted_index.directly | 65 |
| abstract_inverted_index.emitters | 12, 77 |
| abstract_inverted_index.exploits | 104 |
| abstract_inverted_index.multiple | 76, 131 |
| abstract_inverted_index.performs | 66 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.received | 71 |
| abstract_inverted_index.sensors, | 17, 115 |
| abstract_inverted_index.severely | 40 |
| abstract_inverted_index.signals. | 72 |
| abstract_inverted_index.strategy | 137 |
| abstract_inverted_index.tracking | 6, 37, 67 |
| abstract_inverted_index.Moreover, | 133 |
| abstract_inverted_index.algorithm | 63, 143 |
| abstract_inverted_index.considers | 2 |
| abstract_inverted_index.different | 114 |
| abstract_inverted_index.drawback, | 56 |
| abstract_inverted_index.efficient | 135 |
| abstract_inverted_index.emitters. | 132 |
| abstract_inverted_index.posterior | 129 |
| abstract_inverted_index.proposed. | 117 |
| abstract_inverted_index.tracking. | 31 |
| abstract_inverted_index.detection, | 27 |
| abstract_inverted_index.difference | 106 |
| abstract_inverted_index.especially | 46 |
| abstract_inverted_index.extraction | 29 |
| abstract_inverted_index.framework, | 36 |
| abstract_inverted_index.inherently | 103 |
| abstract_inverted_index.likelihood | 100 |
| abstract_inverted_index.scenarios. | 52 |
| abstract_inverted_index.sequential | 24 |
| abstract_inverted_index.generalized | 93 |
| abstract_inverted_index.iteratively | 126 |
| abstract_inverted_index.measurement | 28 |
| abstract_inverted_index.performance | 38, 146 |
| abstract_inverted_index.processing, | 25 |
| abstract_inverted_index.represented | 79 |
| abstract_inverted_index.timevarying | 8 |
| abstract_inverted_index.simulations. | 150 |
| abstract_inverted_index.singlechannel | 15 |
| abstract_inverted_index.traditionally | 20 |
| abstract_inverted_index.implementation | 136 |
| abstract_inverted_index.pre-processing | 44 |
| abstract_inverted_index.multi-Bernoulli | 95 |
| abstract_inverted_index.non-cooperative | 11 |
| abstract_inverted_index.signal-to-noise | 49 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.12621563 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |