Directed Brain Network Analysis for Fatigue Driving Based on EEG Source Signals Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/e24081093
Fatigue driving is one of the major factors that leads to traffic accidents. Long-term monotonous driving can easily cause a decrease in the driver’s attention and vigilance, manifesting a fatigue effect. This paper proposes a means of revealing the effects of driving fatigue on the brain’s information processing abilities, from the aspect of a directed brain network based on electroencephalogram (EEG) source signals. Based on current source density (CSD) data derived from EEG signals using source analysis, a directed brain network for fatigue driving was constructed by using a directed transfer function. As driving time increased, the average clustering coefficient as well as the average path length gradually increased; meanwhile, global efficiency gradually decreased for most rhythms, suggesting that deep driving fatigue enhances the brain’s local information integration abilities while weakening its global abilities. Furthermore, causal flow analysis showed electrodes with significant differences between the awake state and the driving fatigue state, which were mainly distributed in several areas of the anterior and posterior regions, especially under the theta rhythm. It was also found that the ability of the anterior regions to receive information from the posterior regions became significantly worse in the driving fatigue state. These findings may provide a theoretical basis for revealing the underlying neural mechanisms of driving fatigue.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e24081093
- https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633
- OA Status
- gold
- Cited By
- 11
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293778440
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293778440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e24081093Digital Object Identifier
- Title
-
Directed Brain Network Analysis for Fatigue Driving Based on EEG Source SignalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-09Full publication date if available
- Authors
-
Yingmei Qin, Ziyu Hu, Yi Chen, Jing Liu, Lijie Jiang, Yanqiu Che, Chunxiao HanList of authors in order
- Landing page
-
https://doi.org/10.3390/e24081093Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633Direct OA link when available
- Concepts
-
Electroencephalography, Computer science, Vigilance (psychology), Rhythm, Clustering coefficient, Cluster analysis, Artificial intelligence, Neuroscience, Psychology, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 4, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293778440 |
|---|---|
| doi | https://doi.org/10.3390/e24081093 |
| ids.doi | https://doi.org/10.3390/e24081093 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36010760 |
| ids.openalex | https://openalex.org/W4293778440 |
| fwci | 1.76573004 |
| type | article |
| title | Directed Brain Network Analysis for Fatigue Driving Based on EEG Source Signals |
| awards[0].id | https://openalex.org/G7890432515 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62103301 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 8 |
| biblio.volume | 24 |
| biblio.last_page | 1093 |
| biblio.first_page | 1093 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11373 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9941999912261963 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3205 |
| topics[1].subfield.display_name | Experimental and Cognitive Psychology |
| topics[1].display_name | Sleep and Work-Related Fatigue |
| topics[2].id | https://openalex.org/T10745 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Heart Rate Variability and Autonomic Control |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7836900353431702 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5388171076774597 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C192769605 |
| concepts[2].level | 2 |
| concepts[2].score | 0.485443651676178 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1418914 |
| concepts[2].display_name | Vigilance (psychology) |
| concepts[3].id | https://openalex.org/C135343436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4566672146320343 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170406 |
| concepts[3].display_name | Rhythm |
| concepts[4].id | https://openalex.org/C22047676 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4149361252784729 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q898680 |
| concepts[4].display_name | Clustering coefficient |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.38559606671333313 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2967149615287781 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2848440408706665 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.26738202571868896 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10993310809135437 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.7836900353431702 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5388171076774597 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/vigilance |
| keywords[2].score | 0.485443651676178 |
| keywords[2].display_name | Vigilance (psychology) |
| keywords[3].id | https://openalex.org/keywords/rhythm |
| keywords[3].score | 0.4566672146320343 |
| keywords[3].display_name | Rhythm |
| keywords[4].id | https://openalex.org/keywords/clustering-coefficient |
| keywords[4].score | 0.4149361252784729 |
| keywords[4].display_name | Clustering coefficient |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.38559606671333313 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2967149615287781 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.2848440408706665 |
| keywords[7].display_name | Neuroscience |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.26738202571868896 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.10993310809135437 |
| keywords[9].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3390/e24081093 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e24081093 |
| locations[1].id | pmid:36010760 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36010760 |
| locations[2].id | pmh:oai:doaj.org/article:001e835cd66342a0b1c9e1783d680e2a |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 24, Iss 8, p 1093 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/001e835cd66342a0b1c9e1783d680e2a |
| locations[3].id | pmh:oai:mdpi.com:/1099-4300/24/8/1093/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy; Volume 24; Issue 8; Pages: 1093 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/e24081093 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9407608 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Entropy (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9407608 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5019373318 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9912-4780 |
| authorships[0].author.display_name | Yingmei Qin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[0].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[0].institutions[0].id | https://openalex.org/I133270356 |
| authorships[0].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingmei Qin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[1].author.id | https://openalex.org/A5065665700 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6982-3265 |
| authorships[1].author.display_name | Ziyu Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[1].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[1].institutions[0].id | https://openalex.org/I133270356 |
| authorships[1].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziyu Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[2].author.id | https://openalex.org/A5100419273 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8640-967X |
| authorships[2].author.display_name | Yi Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[2].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[2].institutions[0].id | https://openalex.org/I133270356 |
| authorships[2].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yi Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[3].author.id | https://openalex.org/A5025808852 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9549-0177 |
| authorships[3].author.display_name | Jing Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[3].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[3].institutions[0].id | https://openalex.org/I133270356 |
| authorships[3].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jing Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[4].author.id | https://openalex.org/A5071263286 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0547-1931 |
| authorships[4].author.display_name | Lijie Jiang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[4].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[4].institutions[0].id | https://openalex.org/I133270356 |
| authorships[4].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lijie Jiang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[5].author.id | https://openalex.org/A5030231985 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5988-7908 |
| authorships[5].author.display_name | Yanqiu Che |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[5].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[5].institutions[0].id | https://openalex.org/I133270356 |
| authorships[5].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yanqiu Che |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[6].author.id | https://openalex.org/A5009967329 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0647-1834 |
| authorships[6].author.display_name | Chunxiao Han |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I133270356 |
| authorships[6].affiliations[0].raw_affiliation_string | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| authorships[6].institutions[0].id | https://openalex.org/I133270356 |
| authorships[6].institutions[0].ror | https://ror.org/035gwtk09 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I133270356 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tianjin University of Technology and Education |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Chunxiao Han |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Tianjin Key Laboratory of Information Sensing & Intelligent Control, School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Directed Brain Network Analysis for Fatigue Driving Based on EEG Source Signals |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W3183948672, https://openalex.org/W3173606202, https://openalex.org/W3110381201, https://openalex.org/W2948807893, https://openalex.org/W2935909890, https://openalex.org/W2778153218, https://openalex.org/W2758277628, https://openalex.org/W1531601525, https://openalex.org/W2171425842 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/e24081093 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e24081093 |
| primary_location.id | doi:10.3390/e24081093 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/24/8/1093/pdf?version=1660050633 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e24081093 |
| publication_date | 2022-08-09 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2004391995, https://openalex.org/W3005864656, https://openalex.org/W4200550203, https://openalex.org/W6642856349, https://openalex.org/W2908603469, https://openalex.org/W2013926069, https://openalex.org/W3048670727, https://openalex.org/W6674559376, https://openalex.org/W2106319793, https://openalex.org/W2075000159, https://openalex.org/W2940295770, https://openalex.org/W6685796148, https://openalex.org/W2904718020, https://openalex.org/W2933338709, https://openalex.org/W1999653836, https://openalex.org/W2533184058, https://openalex.org/W3199470443, https://openalex.org/W2883732974, https://openalex.org/W2319734199, https://openalex.org/W2783590821, https://openalex.org/W3130728323, https://openalex.org/W3001280104, https://openalex.org/W3206678152, https://openalex.org/W1872655949, https://openalex.org/W1493718371, https://openalex.org/W2911256521, https://openalex.org/W2998674938, https://openalex.org/W2108384452, https://openalex.org/W2128495200, https://openalex.org/W1974666382, https://openalex.org/W2032364166, https://openalex.org/W2208442563, https://openalex.org/W2736164046, https://openalex.org/W2533651630, https://openalex.org/W2009914532, https://openalex.org/W2892217709, https://openalex.org/W2117415070, https://openalex.org/W4280528055, https://openalex.org/W2412178966, https://openalex.org/W1968222074, https://openalex.org/W2110065044, https://openalex.org/W363065518, https://openalex.org/W2963181702, https://openalex.org/W2032970627, https://openalex.org/W2144589738, https://openalex.org/W2181990874, https://openalex.org/W1969952570, https://openalex.org/W2097437818 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 19, 28, 34, 53, 77, 88, 200 |
| abstract_inverted_index.As | 92 |
| abstract_inverted_index.It | 170 |
| abstract_inverted_index.as | 100, 102 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.in | 21, 156, 191 |
| abstract_inverted_index.is | 2 |
| abstract_inverted_index.of | 4, 36, 40, 52, 159, 177, 209 |
| abstract_inverted_index.on | 43, 58, 64 |
| abstract_inverted_index.to | 10, 181 |
| abstract_inverted_index.EEG | 72 |
| abstract_inverted_index.and | 25, 147, 162 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.for | 81, 114, 203 |
| abstract_inverted_index.its | 131 |
| abstract_inverted_index.may | 198 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.the | 5, 22, 38, 44, 50, 96, 103, 123, 144, 148, 160, 167, 175, 178, 185, 192, 205 |
| abstract_inverted_index.was | 84, 171 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.also | 172 |
| abstract_inverted_index.data | 69 |
| abstract_inverted_index.deep | 119 |
| abstract_inverted_index.flow | 136 |
| abstract_inverted_index.from | 49, 71, 184 |
| abstract_inverted_index.most | 115 |
| abstract_inverted_index.path | 105 |
| abstract_inverted_index.that | 8, 118, 174 |
| abstract_inverted_index.time | 94 |
| abstract_inverted_index.well | 101 |
| abstract_inverted_index.were | 153 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.(CSD) | 68 |
| abstract_inverted_index.(EEG) | 60 |
| abstract_inverted_index.Based | 63 |
| abstract_inverted_index.These | 196 |
| abstract_inverted_index.areas | 158 |
| abstract_inverted_index.awake | 145 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.basis | 202 |
| abstract_inverted_index.brain | 55, 79 |
| abstract_inverted_index.cause | 18 |
| abstract_inverted_index.found | 173 |
| abstract_inverted_index.leads | 9 |
| abstract_inverted_index.local | 125 |
| abstract_inverted_index.major | 6 |
| abstract_inverted_index.means | 35 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.state | 146 |
| abstract_inverted_index.theta | 168 |
| abstract_inverted_index.under | 166 |
| abstract_inverted_index.using | 74, 87 |
| abstract_inverted_index.which | 152 |
| abstract_inverted_index.while | 129 |
| abstract_inverted_index.worse | 190 |
| abstract_inverted_index.aspect | 51 |
| abstract_inverted_index.became | 188 |
| abstract_inverted_index.causal | 135 |
| abstract_inverted_index.easily | 17 |
| abstract_inverted_index.global | 110, 132 |
| abstract_inverted_index.length | 106 |
| abstract_inverted_index.mainly | 154 |
| abstract_inverted_index.neural | 207 |
| abstract_inverted_index.showed | 138 |
| abstract_inverted_index.source | 61, 66, 75 |
| abstract_inverted_index.state, | 151 |
| abstract_inverted_index.state. | 195 |
| abstract_inverted_index.Fatigue | 0 |
| abstract_inverted_index.ability | 176 |
| abstract_inverted_index.average | 97, 104 |
| abstract_inverted_index.between | 143 |
| abstract_inverted_index.current | 65 |
| abstract_inverted_index.density | 67 |
| abstract_inverted_index.derived | 70 |
| abstract_inverted_index.driving | 1, 15, 41, 83, 93, 120, 149, 193, 210 |
| abstract_inverted_index.effect. | 30 |
| abstract_inverted_index.effects | 39 |
| abstract_inverted_index.factors | 7 |
| abstract_inverted_index.fatigue | 29, 42, 82, 121, 150, 194 |
| abstract_inverted_index.network | 56, 80 |
| abstract_inverted_index.provide | 199 |
| abstract_inverted_index.receive | 182 |
| abstract_inverted_index.regions | 180, 187 |
| abstract_inverted_index.rhythm. | 169 |
| abstract_inverted_index.several | 157 |
| abstract_inverted_index.signals | 73 |
| abstract_inverted_index.traffic | 11 |
| abstract_inverted_index.analysis | 137 |
| abstract_inverted_index.anterior | 161, 179 |
| abstract_inverted_index.decrease | 20 |
| abstract_inverted_index.directed | 54, 78, 89 |
| abstract_inverted_index.enhances | 122 |
| abstract_inverted_index.fatigue. | 211 |
| abstract_inverted_index.findings | 197 |
| abstract_inverted_index.proposes | 33 |
| abstract_inverted_index.regions, | 164 |
| abstract_inverted_index.rhythms, | 116 |
| abstract_inverted_index.signals. | 62 |
| abstract_inverted_index.transfer | 90 |
| abstract_inverted_index.Long-term | 13 |
| abstract_inverted_index.abilities | 128 |
| abstract_inverted_index.analysis, | 76 |
| abstract_inverted_index.attention | 24 |
| abstract_inverted_index.brain’s | 45, 124 |
| abstract_inverted_index.decreased | 113 |
| abstract_inverted_index.function. | 91 |
| abstract_inverted_index.gradually | 107, 112 |
| abstract_inverted_index.posterior | 163, 186 |
| abstract_inverted_index.revealing | 37, 204 |
| abstract_inverted_index.weakening | 130 |
| abstract_inverted_index.abilities, | 48 |
| abstract_inverted_index.abilities. | 133 |
| abstract_inverted_index.accidents. | 12 |
| abstract_inverted_index.clustering | 98 |
| abstract_inverted_index.driver’s | 23 |
| abstract_inverted_index.efficiency | 111 |
| abstract_inverted_index.electrodes | 139 |
| abstract_inverted_index.especially | 165 |
| abstract_inverted_index.increased, | 95 |
| abstract_inverted_index.increased; | 108 |
| abstract_inverted_index.meanwhile, | 109 |
| abstract_inverted_index.mechanisms | 208 |
| abstract_inverted_index.monotonous | 14 |
| abstract_inverted_index.processing | 47 |
| abstract_inverted_index.suggesting | 117 |
| abstract_inverted_index.underlying | 206 |
| abstract_inverted_index.vigilance, | 26 |
| abstract_inverted_index.coefficient | 99 |
| abstract_inverted_index.constructed | 85 |
| abstract_inverted_index.differences | 142 |
| abstract_inverted_index.distributed | 155 |
| abstract_inverted_index.information | 46, 126, 183 |
| abstract_inverted_index.integration | 127 |
| abstract_inverted_index.manifesting | 27 |
| abstract_inverted_index.significant | 141 |
| abstract_inverted_index.theoretical | 201 |
| abstract_inverted_index.Furthermore, | 134 |
| abstract_inverted_index.significantly | 189 |
| abstract_inverted_index.electroencephalogram | 59 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5009967329 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I133270356 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.80212853 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |