Discovering Common Information in Multi-view Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2406.15043
We introduce an innovative and mathematically rigorous definition for computing common information from multi-view data, drawing inspiration from Gács-Körner common information in information theory. Leveraging this definition, we develop a novel supervised multi-view learning framework to capture both common and unique information. By explicitly minimizing a total correlation term, the extracted common information and the unique information from each view are forced to be independent of each other, which, in turn, theoretically guarantees the effectiveness of our framework. To estimate information-theoretic quantities, our framework employs matrix-based R{é}nyi's $α$-order entropy functional, which forgoes the need for variational approximation and distributional estimation in high-dimensional space. Theoretical proof is provided that our framework can faithfully discover both common and unique information from multi-view data. Experiments on synthetic and seven benchmark real-world datasets demonstrate the superior performance of our proposed framework over state-of-the-art approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2406.15043
- https://arxiv.org/pdf/2406.15043
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399991012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399991012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2406.15043Digital Object Identifier
- Title
-
Discovering Common Information in Multi-view DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-21Full publication date if available
- Authors
-
Q Zhang, Mingfei Lu, Shujian Yu, Jingmin Xin, Badong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2406.15043Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2406.15043Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2406.15043Direct OA link when available
- Concepts
-
Computer science, Data science, Data mining, Information retrievalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399991012 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2406.15043 |
| ids.doi | https://doi.org/10.48550/arxiv.2406.15043 |
| ids.openalex | https://openalex.org/W4399991012 |
| fwci | |
| type | preprint |
| title | Discovering Common Information in Multi-view Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10215 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8928999900817871 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Semantic Web and Ontologies |
| topics[1].id | https://openalex.org/T10538 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8848999738693237 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Data Mining Algorithms and Applications |
| topics[2].id | https://openalex.org/T10757 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.85589998960495 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3305 |
| topics[2].subfield.display_name | Geography, Planning and Development |
| topics[2].display_name | Geographic Information Systems Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5321442484855652 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.44006526470184326 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3872915208339691 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32272130250930786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5321442484855652 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.44006526470184326 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.3872915208339691 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.32272130250930786 |
| keywords[3].display_name | Information retrieval |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2406.15043 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2406.15043 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2406.15043 |
| locations[1].id | doi:10.48550/arxiv.2406.15043 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2406.15043 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5049552955 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6444-5314 |
| authorships[0].author.display_name | Q Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Qi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5040986051 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9516-3421 |
| authorships[1].author.display_name | Mingfei Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lu, Mingfei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041358503 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6385-1705 |
| authorships[2].author.display_name | Shujian Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Shujian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031227866 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1906-2327 |
| authorships[3].author.display_name | Jingmin Xin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xin, Jingmin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077852542 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1710-3818 |
| authorships[4].author.display_name | Badong Chen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chen, Badong |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2406.15043 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Discovering Common Information in Multi-view Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10215 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8928999900817871 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Semantic Web and Ontologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2406.15043 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2406.15043 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2406.15043 |
| primary_location.id | pmh:oai:arXiv.org:2406.15043 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2406.15043 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2406.15043 |
| publication_date | 2024-06-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29, 45 |
| abstract_inverted_index.By | 42 |
| abstract_inverted_index.To | 78 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.be | 63 |
| abstract_inverted_index.in | 21, 69, 100 |
| abstract_inverted_index.is | 105 |
| abstract_inverted_index.of | 65, 75, 133 |
| abstract_inverted_index.on | 122 |
| abstract_inverted_index.to | 35, 62 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.and | 4, 39, 53, 97, 115, 124 |
| abstract_inverted_index.are | 60 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 8, 94 |
| abstract_inverted_index.our | 76, 82, 108, 134 |
| abstract_inverted_index.the | 49, 54, 73, 92, 130 |
| abstract_inverted_index.both | 37, 113 |
| abstract_inverted_index.each | 58, 66 |
| abstract_inverted_index.from | 12, 17, 57, 118 |
| abstract_inverted_index.need | 93 |
| abstract_inverted_index.over | 137 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.view | 59 |
| abstract_inverted_index.data, | 14 |
| abstract_inverted_index.data. | 120 |
| abstract_inverted_index.novel | 30 |
| abstract_inverted_index.proof | 104 |
| abstract_inverted_index.seven | 125 |
| abstract_inverted_index.term, | 48 |
| abstract_inverted_index.total | 46 |
| abstract_inverted_index.turn, | 70 |
| abstract_inverted_index.which | 90 |
| abstract_inverted_index.common | 10, 19, 38, 51, 114 |
| abstract_inverted_index.forced | 61 |
| abstract_inverted_index.other, | 67 |
| abstract_inverted_index.space. | 102 |
| abstract_inverted_index.unique | 40, 55, 116 |
| abstract_inverted_index.which, | 68 |
| abstract_inverted_index.capture | 36 |
| abstract_inverted_index.develop | 28 |
| abstract_inverted_index.drawing | 15 |
| abstract_inverted_index.employs | 84 |
| abstract_inverted_index.entropy | 88 |
| abstract_inverted_index.forgoes | 91 |
| abstract_inverted_index.theory. | 23 |
| abstract_inverted_index.datasets | 128 |
| abstract_inverted_index.discover | 112 |
| abstract_inverted_index.estimate | 79 |
| abstract_inverted_index.learning | 33 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.provided | 106 |
| abstract_inverted_index.rigorous | 6 |
| abstract_inverted_index.superior | 131 |
| abstract_inverted_index.benchmark | 126 |
| abstract_inverted_index.computing | 9 |
| abstract_inverted_index.extracted | 50 |
| abstract_inverted_index.framework | 34, 83, 109, 136 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.synthetic | 123 |
| abstract_inverted_index.$α$-order | 87 |
| abstract_inverted_index.Leveraging | 24 |
| abstract_inverted_index.R{é}nyi's | 86 |
| abstract_inverted_index.definition | 7 |
| abstract_inverted_index.estimation | 99 |
| abstract_inverted_index.explicitly | 43 |
| abstract_inverted_index.faithfully | 111 |
| abstract_inverted_index.framework. | 77 |
| abstract_inverted_index.guarantees | 72 |
| abstract_inverted_index.innovative | 3 |
| abstract_inverted_index.minimizing | 44 |
| abstract_inverted_index.multi-view | 13, 32, 119 |
| abstract_inverted_index.real-world | 127 |
| abstract_inverted_index.supervised | 31 |
| abstract_inverted_index.Experiments | 121 |
| abstract_inverted_index.Theoretical | 103 |
| abstract_inverted_index.approaches. | 139 |
| abstract_inverted_index.correlation | 47 |
| abstract_inverted_index.definition, | 26 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.functional, | 89 |
| abstract_inverted_index.independent | 64 |
| abstract_inverted_index.information | 11, 20, 22, 52, 56, 117 |
| abstract_inverted_index.inspiration | 16 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.quantities, | 81 |
| abstract_inverted_index.variational | 95 |
| abstract_inverted_index.information. | 41 |
| abstract_inverted_index.matrix-based | 85 |
| abstract_inverted_index.Gács-Körner | 18 |
| abstract_inverted_index.approximation | 96 |
| abstract_inverted_index.effectiveness | 74 |
| abstract_inverted_index.theoretically | 71 |
| abstract_inverted_index.distributional | 98 |
| abstract_inverted_index.mathematically | 5 |
| abstract_inverted_index.high-dimensional | 101 |
| abstract_inverted_index.state-of-the-art | 138 |
| abstract_inverted_index.information-theoretic | 80 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |