Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jcim.8b00376
The versatility of similarity searching and quantitative structure-activity relationships to model the activity of compound sets within given bioactivity ranges (i.e., interpolation) is well established. However, their relative performance in the common scenario in early stage drug discovery where lots of inactive data but no active data points are available (i.e., extrapolation from the low-activity to the high-activity range) has not been thoroughly examined yet. To this aim, we have designed an iterative virtual screening strategy which was evaluated on 25 diverse bioactivity data sets from ChEMBL. We benchmark the efficiency of random forest (RF), multiple linear regression, ridge regression, similarity searching, and random selection of compounds to identify a highly active molecule in the test set among a large number of low-potency compounds. We use the number of iterations required to find this active molecule to evaluate the performance of each experimental setup. We show that linear and ridge regression often outperform RF and similarity searching, reducing the number of iterations to find an active compound by a factor of 2 or more. Even simple regression methods seem better able to extrapolate to high-bioactivity ranges than RF, which only provides output values in the range covered by the training set. In addition, examination of the scaffold diversity in the data sets used shows that in some cases similarity searching and RF require two times as many iterations as random selection depending on the chemical space covered in the initial training data. Lastly, we show using bioactivity data for COX-1 and COX-2 that our framework can be extended to multitarget drug discovery, where compounds are selected by concomitantly considering their activity against multiple targets. Overall, this study provides an approach for iterative screening where only inactive data are present in early stages of drug discovery in order to discover highly potent compounds and the best experimental set up in which to do so.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jcim.8b00376
- OA Status
- green
- Cited By
- 42
- References
- 84
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2888526648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2888526648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jcim.8b00376Digital Object Identifier
- Title
-
Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative ScreeningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-21Full publication date if available
- Authors
-
Isidro Cortés‐Ciriano, Nicholas C. Firth, Andreas Bender, Oliver P WatsonList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jcim.8b00376Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/3497816Direct OA link when available
- Concepts
-
chEMBL, Random forest, Virtual screening, Computer science, Similarity (geometry), Chemical space, Benchmark (surveying), Set (abstract data type), Regression, Extrapolation, Linear regression, Range (aeronautics), Data mining, Mathematics, Drug discovery, Artificial intelligence, Machine learning, Statistics, Bioinformatics, Biology, Image (mathematics), Geography, Materials science, Programming language, Geodesy, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
42Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 5, 2022: 2, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
84Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2888526648 |
|---|---|
| doi | https://doi.org/10.1021/acs.jcim.8b00376 |
| ids.doi | https://doi.org/10.17863/cam.39658 |
| ids.mag | 2888526648 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/30130102 |
| ids.openalex | https://openalex.org/W2888526648 |
| fwci | 6.93744587 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D055808 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Drug Discovery |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D004353 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Drug Evaluation, Preclinical |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D021281 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Quantitative Structure-Activity Relationship |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D055808 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Drug Discovery |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D004353 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Drug Evaluation, Preclinical |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D021281 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Quantitative Structure-Activity Relationship |
| type | article |
| title | Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening |
| awards[0].id | https://openalex.org/G4504061977 |
| awards[0].funder_id | https://openalex.org/F4320338352 |
| awards[0].display_name | |
| awards[0].funder_award_id | 336159 |
| awards[0].funder_display_name | FP7 Ideas: European Research Council |
| awards[1].id | https://openalex.org/G2927471809 |
| awards[1].funder_id | https://openalex.org/F4320338337 |
| awards[1].display_name | Pan-cancer functional evaluation of non-coding DNA mutations |
| awards[1].funder_award_id | 703543 |
| awards[1].funder_display_name | H2020 Marie Skłodowska-Curie Actions |
| awards[2].id | https://openalex.org/G344318989 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | EP/M006093/1 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 9 |
| biblio.volume | 58 |
| biblio.last_page | 2014 |
| biblio.first_page | 2000 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9451000094413757 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T11882 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9284999966621399 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Plant biochemistry and biosynthesis |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| funders[1].id | https://openalex.org/F4320338337 |
| funders[1].ror | |
| funders[1].display_name | H2020 Marie Skłodowska-Curie Actions |
| funders[2].id | https://openalex.org/F4320338352 |
| funders[2].ror | https://ror.org/0472cxd90 |
| funders[2].display_name | FP7 Ideas: European Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63222358 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6761406064033508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6120337 |
| concepts[0].display_name | chEMBL |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6055735349655151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C103697762 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5915442109107971 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4112105 |
| concepts[2].display_name | Virtual screening |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5891592502593994 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5870470404624939 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C99726746 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5867193937301636 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q906396 |
| concepts[5].display_name | Chemical space |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5139850974082947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49157223105430603 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C83546350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48985645174980164 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[8].display_name | Regression |
| concepts[9].id | https://openalex.org/C132459708 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47136440873146057 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q744069 |
| concepts[9].display_name | Extrapolation |
| concepts[10].id | https://openalex.org/C48921125 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4470858871936798 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[10].display_name | Linear regression |
| concepts[11].id | https://openalex.org/C204323151 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4268408715724945 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[11].display_name | Range (aeronautics) |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.355366051197052 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3337656855583191 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C74187038 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2914050817489624 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[14].display_name | Drug discovery |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.23969539999961853 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.22003397345542908 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.17997980117797852 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C60644358 |
| concepts[18].level | 1 |
| concepts[18].score | 0.1185489296913147 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[18].display_name | Bioinformatics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.09963914752006531 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C205649164 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[21].display_name | Geography |
| concepts[22].id | https://openalex.org/C192562407 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[22].display_name | Materials science |
| concepts[23].id | https://openalex.org/C199360897 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[23].display_name | Programming language |
| concepts[24].id | https://openalex.org/C13280743 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[24].display_name | Geodesy |
| concepts[25].id | https://openalex.org/C159985019 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[25].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/chembl |
| keywords[0].score | 0.6761406064033508 |
| keywords[0].display_name | chEMBL |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.6055735349655151 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/virtual-screening |
| keywords[2].score | 0.5915442109107971 |
| keywords[2].display_name | Virtual screening |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5891592502593994 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.5870470404624939 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/chemical-space |
| keywords[5].score | 0.5867193937301636 |
| keywords[5].display_name | Chemical space |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.5139850974082947 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.49157223105430603 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/regression |
| keywords[8].score | 0.48985645174980164 |
| keywords[8].display_name | Regression |
| keywords[9].id | https://openalex.org/keywords/extrapolation |
| keywords[9].score | 0.47136440873146057 |
| keywords[9].display_name | Extrapolation |
| keywords[10].id | https://openalex.org/keywords/linear-regression |
| keywords[10].score | 0.4470858871936798 |
| keywords[10].display_name | Linear regression |
| keywords[11].id | https://openalex.org/keywords/range |
| keywords[11].score | 0.4268408715724945 |
| keywords[11].display_name | Range (aeronautics) |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.355366051197052 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.3337656855583191 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/drug-discovery |
| keywords[14].score | 0.2914050817489624 |
| keywords[14].display_name | Drug discovery |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.23969539999961853 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.22003397345542908 |
| keywords[16].display_name | Machine learning |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.17997980117797852 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/bioinformatics |
| keywords[18].score | 0.1185489296913147 |
| keywords[18].display_name | Bioinformatics |
| keywords[19].id | https://openalex.org/keywords/biology |
| keywords[19].score | 0.09963914752006531 |
| keywords[19].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1021/acs.jcim.8b00376 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S167262187 |
| locations[0].source.issn | 1549-9596, 1549-960X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1549-9596 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Chemical Information and Modeling |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Chemical Information and Modeling |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jcim.8b00376 |
| locations[1].id | pmid:30130102 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of chemical information and modeling |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/30130102 |
| locations[2].id | pmh:oai:www.repository.cam.ac.uk:1810/292498 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401776 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Apollo (University of Cambridge) |
| locations[2].source.host_organization | https://openalex.org/I241749 |
| locations[2].source.host_organization_name | University of Cambridge |
| locations[2].source.host_organization_lineage | https://openalex.org/I241749 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.repository.cam.ac.uk/handle/1810/292498 |
| locations[3].id | pmh:oai:zenodo.org:3497816 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400562 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[3].source.host_organization | https://openalex.org/I67311998 |
| locations[3].source.host_organization_name | European Organization for Nuclear Research |
| locations[3].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://zenodo.org/record/3497816 |
| locations[4].id | doi:10.17863/cam.39658 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S7407050737 |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Apollo |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article-journal |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.17863/cam.39658 |
| indexed_in | crossref, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5091416834 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2036-494X |
| authorships[0].author.display_name | Isidro Cortés‐Ciriano |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Isidro Cortés-Ciriano |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5062890799 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5391-3143 |
| authorships[1].author.display_name | Nicholas C. Firth |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Medical Image Computing, Department of Computer Science, UCL, London WC1E 6BT, United Kingdom |
| authorships[1].affiliations[1].raw_affiliation_string | Evariste Technologies Ltd, Goring on Thames RG8 9AL, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nicholas C. Firth |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Medical Image Computing, Department of Computer Science, UCL, London WC1E 6BT, United Kingdom, Evariste Technologies Ltd, Goring on Thames RG8 9AL, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5026643759 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6683-7546 |
| authorships[2].author.display_name | Andreas Bender |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I241749 |
| authorships[2].institutions[0].ror | https://ror.org/013meh722 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Cambridge |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Andreas Bender |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5084401832 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Oliver P Watson |
| authorships[3].affiliations[0].raw_affiliation_string | Evariste Technologies Ltd, Goring on Thames RG8 9AL, United Kingdom |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Oliver Watson |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Evariste Technologies Ltd, Goring on Thames RG8 9AL, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/3497816 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W3005441379, https://openalex.org/W4207063555, https://openalex.org/W2604173773, https://openalex.org/W2997728144, https://openalex.org/W4210747027, https://openalex.org/W2770765812, https://openalex.org/W3117153716, https://openalex.org/W2791678506, https://openalex.org/W3018201610, https://openalex.org/W2072444571 |
| cited_by_count | 42 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 8 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 13 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:zenodo.org:3497816 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/3497816 |
| primary_location.id | doi:10.1021/acs.jcim.8b00376 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S167262187 |
| primary_location.source.issn | 1549-9596, 1549-960X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1549-9596 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Chemical Information and Modeling |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Chemical Information and Modeling |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jcim.8b00376 |
| publication_date | 2018-08-21 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2790808809, https://openalex.org/W2053717624, https://openalex.org/W2340782621, https://openalex.org/W1972202745, https://openalex.org/W2070789802, https://openalex.org/W2123159115, https://openalex.org/W2033882981, https://openalex.org/W2033342433, https://openalex.org/W1435191252, https://openalex.org/W2464316836, https://openalex.org/W2613825731, https://openalex.org/W2289693310, https://openalex.org/W2033757486, https://openalex.org/W2008732224, https://openalex.org/W1998848097, https://openalex.org/W2046515297, https://openalex.org/W1970651561, https://openalex.org/W2273821489, https://openalex.org/W2789547262, https://openalex.org/W2587942483, https://openalex.org/W2067214947, https://openalex.org/W2015461838, https://openalex.org/W2112937261, https://openalex.org/W1973974137, https://openalex.org/W2112411768, https://openalex.org/W157339914, https://openalex.org/W2096729078, https://openalex.org/W4240773179, https://openalex.org/W2132842501, https://openalex.org/W2320034101, https://openalex.org/W2151697120, https://openalex.org/W1988909822, https://openalex.org/W2100916935, https://openalex.org/W2052008210, https://openalex.org/W2017398555, https://openalex.org/W1570912112, https://openalex.org/W2146513978, https://openalex.org/W2007953805, https://openalex.org/W1986516145, https://openalex.org/W2098426299, https://openalex.org/W2049331434, https://openalex.org/W2139731838, https://openalex.org/W2001459151, https://openalex.org/W2099071242, https://openalex.org/W2714724074, https://openalex.org/W2058220696, https://openalex.org/W2006360003, https://openalex.org/W2155478691, https://openalex.org/W2096541451, https://openalex.org/W1988037271, https://openalex.org/W2071234745, https://openalex.org/W2048611698, https://openalex.org/W2104709519, https://openalex.org/W2093737637, https://openalex.org/W2019538911, https://openalex.org/W2577224147, https://openalex.org/W2267945123, https://openalex.org/W2950238754, https://openalex.org/W2009842403, https://openalex.org/W2802404464, https://openalex.org/W2345751939, https://openalex.org/W2051503575, https://openalex.org/W1994249991, https://openalex.org/W2263435653, https://openalex.org/W2088970363, https://openalex.org/W2162610241, https://openalex.org/W2911964244, https://openalex.org/W2052654049, https://openalex.org/W2733454913, https://openalex.org/W2010933199, https://openalex.org/W330953206, https://openalex.org/W2039609876, https://openalex.org/W2025556769, https://openalex.org/W2558999090, https://openalex.org/W2168990503, https://openalex.org/W2037857918, https://openalex.org/W2131427975, https://openalex.org/W1975601342, https://openalex.org/W2101234009, https://openalex.org/W109969751, https://openalex.org/W2171585602, https://openalex.org/W2323444743, https://openalex.org/W121995339, https://openalex.org/W2275489486 |
| referenced_works_count | 84 |
| abstract_inverted_index.2 | 171 |
| abstract_inverted_index.a | 109, 118, 168 |
| abstract_inverted_index.25 | 80 |
| abstract_inverted_index.In | 201 |
| abstract_inverted_index.RF | 153, 221 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.We | 87, 124, 144 |
| abstract_inverted_index.an | 71, 164, 278 |
| abstract_inverted_index.as | 225, 228 |
| abstract_inverted_index.be | 256 |
| abstract_inverted_index.by | 167, 197, 266 |
| abstract_inverted_index.do | 311 |
| abstract_inverted_index.in | 29, 33, 113, 193, 208, 215, 237, 289, 295, 308 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.no | 44 |
| abstract_inverted_index.of | 2, 13, 40, 91, 105, 121, 128, 140, 160, 170, 204, 292 |
| abstract_inverted_index.on | 79, 232 |
| abstract_inverted_index.or | 172 |
| abstract_inverted_index.to | 9, 55, 107, 131, 136, 162, 181, 183, 258, 297, 310 |
| abstract_inverted_index.up | 307 |
| abstract_inverted_index.we | 68, 243 |
| abstract_inverted_index.RF, | 187 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 5, 102, 148, 154, 220, 250, 302 |
| abstract_inverted_index.are | 48, 264, 287 |
| abstract_inverted_index.but | 43 |
| abstract_inverted_index.can | 255 |
| abstract_inverted_index.for | 248, 280 |
| abstract_inverted_index.has | 59 |
| abstract_inverted_index.not | 60 |
| abstract_inverted_index.our | 253 |
| abstract_inverted_index.set | 116, 306 |
| abstract_inverted_index.so. | 312 |
| abstract_inverted_index.the | 11, 30, 53, 56, 89, 114, 126, 138, 158, 194, 198, 205, 209, 233, 238, 303 |
| abstract_inverted_index.two | 223 |
| abstract_inverted_index.use | 125 |
| abstract_inverted_index.was | 77 |
| abstract_inverted_index.Even | 174 |
| abstract_inverted_index.able | 180 |
| abstract_inverted_index.aim, | 67 |
| abstract_inverted_index.been | 61 |
| abstract_inverted_index.best | 304 |
| abstract_inverted_index.data | 42, 46, 83, 210, 247, 286 |
| abstract_inverted_index.drug | 36, 260, 293 |
| abstract_inverted_index.each | 141 |
| abstract_inverted_index.find | 132, 163 |
| abstract_inverted_index.from | 52, 85 |
| abstract_inverted_index.have | 69 |
| abstract_inverted_index.lots | 39 |
| abstract_inverted_index.many | 226 |
| abstract_inverted_index.only | 189, 284 |
| abstract_inverted_index.seem | 178 |
| abstract_inverted_index.set. | 200 |
| abstract_inverted_index.sets | 15, 84, 211 |
| abstract_inverted_index.show | 145, 244 |
| abstract_inverted_index.some | 216 |
| abstract_inverted_index.test | 115 |
| abstract_inverted_index.than | 186 |
| abstract_inverted_index.that | 146, 214, 252 |
| abstract_inverted_index.this | 66, 133, 275 |
| abstract_inverted_index.used | 212 |
| abstract_inverted_index.well | 23 |
| abstract_inverted_index.yet. | 64 |
| abstract_inverted_index.(RF), | 94 |
| abstract_inverted_index.COX-1 | 249 |
| abstract_inverted_index.COX-2 | 251 |
| abstract_inverted_index.among | 117 |
| abstract_inverted_index.cases | 217 |
| abstract_inverted_index.data. | 241 |
| abstract_inverted_index.early | 34, 290 |
| abstract_inverted_index.given | 17 |
| abstract_inverted_index.large | 119 |
| abstract_inverted_index.model | 10 |
| abstract_inverted_index.more. | 173 |
| abstract_inverted_index.often | 151 |
| abstract_inverted_index.order | 296 |
| abstract_inverted_index.range | 195 |
| abstract_inverted_index.ridge | 98, 149 |
| abstract_inverted_index.shows | 213 |
| abstract_inverted_index.space | 235 |
| abstract_inverted_index.stage | 35 |
| abstract_inverted_index.study | 276 |
| abstract_inverted_index.their | 26, 269 |
| abstract_inverted_index.times | 224 |
| abstract_inverted_index.using | 245 |
| abstract_inverted_index.where | 38, 262, 283 |
| abstract_inverted_index.which | 76, 188, 309 |
| abstract_inverted_index.(i.e., | 20, 50 |
| abstract_inverted_index.active | 45, 111, 134, 165 |
| abstract_inverted_index.better | 179 |
| abstract_inverted_index.common | 31 |
| abstract_inverted_index.factor | 169 |
| abstract_inverted_index.forest | 93 |
| abstract_inverted_index.highly | 110, 299 |
| abstract_inverted_index.linear | 96, 147 |
| abstract_inverted_index.number | 120, 127, 159 |
| abstract_inverted_index.output | 191 |
| abstract_inverted_index.points | 47 |
| abstract_inverted_index.potent | 300 |
| abstract_inverted_index.random | 92, 103, 229 |
| abstract_inverted_index.range) | 58 |
| abstract_inverted_index.ranges | 19, 185 |
| abstract_inverted_index.setup. | 143 |
| abstract_inverted_index.simple | 175 |
| abstract_inverted_index.stages | 291 |
| abstract_inverted_index.values | 192 |
| abstract_inverted_index.within | 16 |
| abstract_inverted_index.ChEMBL. | 86 |
| abstract_inverted_index.Lastly, | 242 |
| abstract_inverted_index.against | 271 |
| abstract_inverted_index.covered | 196, 236 |
| abstract_inverted_index.diverse | 81 |
| abstract_inverted_index.initial | 239 |
| abstract_inverted_index.methods | 177 |
| abstract_inverted_index.present | 288 |
| abstract_inverted_index.require | 222 |
| abstract_inverted_index.virtual | 73 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.Overall, | 274 |
| abstract_inverted_index.activity | 12, 270 |
| abstract_inverted_index.approach | 279 |
| abstract_inverted_index.chemical | 234 |
| abstract_inverted_index.compound | 14, 166 |
| abstract_inverted_index.designed | 70 |
| abstract_inverted_index.discover | 298 |
| abstract_inverted_index.evaluate | 137 |
| abstract_inverted_index.examined | 63 |
| abstract_inverted_index.extended | 257 |
| abstract_inverted_index.identify | 108 |
| abstract_inverted_index.inactive | 41, 285 |
| abstract_inverted_index.molecule | 112, 135 |
| abstract_inverted_index.multiple | 95, 272 |
| abstract_inverted_index.provides | 190, 277 |
| abstract_inverted_index.reducing | 157 |
| abstract_inverted_index.relative | 27 |
| abstract_inverted_index.required | 130 |
| abstract_inverted_index.scaffold | 206 |
| abstract_inverted_index.scenario | 32 |
| abstract_inverted_index.selected | 265 |
| abstract_inverted_index.strategy | 75 |
| abstract_inverted_index.targets. | 273 |
| abstract_inverted_index.training | 199, 240 |
| abstract_inverted_index.addition, | 202 |
| abstract_inverted_index.available | 49 |
| abstract_inverted_index.benchmark | 88 |
| abstract_inverted_index.compounds | 106, 263, 301 |
| abstract_inverted_index.depending | 231 |
| abstract_inverted_index.discovery | 37, 294 |
| abstract_inverted_index.diversity | 207 |
| abstract_inverted_index.evaluated | 78 |
| abstract_inverted_index.framework | 254 |
| abstract_inverted_index.iterative | 72, 281 |
| abstract_inverted_index.screening | 74, 282 |
| abstract_inverted_index.searching | 4, 219 |
| abstract_inverted_index.selection | 104, 230 |
| abstract_inverted_index.compounds. | 123 |
| abstract_inverted_index.discovery, | 261 |
| abstract_inverted_index.efficiency | 90 |
| abstract_inverted_index.iterations | 129, 161, 227 |
| abstract_inverted_index.outperform | 152 |
| abstract_inverted_index.regression | 150, 176 |
| abstract_inverted_index.searching, | 101, 156 |
| abstract_inverted_index.similarity | 3, 100, 155, 218 |
| abstract_inverted_index.thoroughly | 62 |
| abstract_inverted_index.bioactivity | 18, 82, 246 |
| abstract_inverted_index.considering | 268 |
| abstract_inverted_index.examination | 203 |
| abstract_inverted_index.extrapolate | 182 |
| abstract_inverted_index.low-potency | 122 |
| abstract_inverted_index.multitarget | 259 |
| abstract_inverted_index.performance | 28, 139 |
| abstract_inverted_index.regression, | 97, 99 |
| abstract_inverted_index.versatility | 1 |
| abstract_inverted_index.established. | 24 |
| abstract_inverted_index.experimental | 142, 305 |
| abstract_inverted_index.low-activity | 54 |
| abstract_inverted_index.quantitative | 6 |
| abstract_inverted_index.concomitantly | 267 |
| abstract_inverted_index.extrapolation | 51 |
| abstract_inverted_index.high-activity | 57 |
| abstract_inverted_index.relationships | 8 |
| abstract_inverted_index.interpolation) | 21 |
| abstract_inverted_index.high-bioactivity | 184 |
| abstract_inverted_index.structure-activity | 7 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5091416834 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I241749 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.9697288 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |