Discovering Mixtures of Structural Causal Models from Time Series Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.06312
Discovering causal relationships from time series data is significant in fields such as finance, climate science, and neuroscience. However, contemporary techniques rely on the simplifying assumption that data originates from the same causal model, while in practice, data is heterogeneous and can stem from different causal models. In this work, we relax this assumption and perform causal discovery from time series data originating from a mixture of causal models. We propose a general variational inference-based framework called MCD to infer the underlying causal models as well as the mixing probability of each sample. Our approach employs an end-to-end training process that maximizes an evidence-lower bound for the data likelihood. We present two variants: MCD-Linear for linear relationships and independent noise, and MCD-Nonlinear for nonlinear causal relationships and history-dependent noise. We demonstrate that our method surpasses state-of-the-art benchmarks in causal discovery tasks through extensive experimentation on synthetic and real-world datasets, particularly when the data emanates from diverse underlying causal graphs. Theoretically, we prove the identifiability of such a model under some mild assumptions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.06312
- https://arxiv.org/pdf/2310.06312
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387560993
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387560993Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.06312Digital Object Identifier
- Title
-
Discovering Mixtures of Structural Causal Models from Time Series DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-10Full publication date if available
- Authors
-
Sumanth Varambally, Yi-An Ma, Rose YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.06312Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.06312Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.06312Direct OA link when available
- Concepts
-
Identifiability, Causal inference, Causal model, Computer science, Inference, Causal structure, Series (stratigraphy), Synthetic data, Machine learning, Time series, Noise (video), Artificial intelligence, Data mining, Econometrics, Mathematics, Statistics, Quantum mechanics, Paleontology, Image (mathematics), Biology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387560993 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.06312 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.06312 |
| ids.openalex | https://openalex.org/W4387560993 |
| fwci | |
| type | preprint |
| title | Discovering Mixtures of Structural Causal Models from Time Series Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T11273 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9751999974250793 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Graph Neural Networks |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9492999911308289 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C122770356 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8511085510253906 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1656753 |
| concepts[0].display_name | Identifiability |
| concepts[1].id | https://openalex.org/C158600405 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7531188726425171 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[1].display_name | Causal inference |
| concepts[2].id | https://openalex.org/C11671645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6395338177680969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5054567 |
| concepts[2].display_name | Causal model |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5956659913063049 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5633493661880493 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C163504300 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5133373141288757 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2364925 |
| concepts[5].display_name | Causal structure |
| concepts[6].id | https://openalex.org/C143724316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5106568932533264 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[6].display_name | Series (stratigraphy) |
| concepts[7].id | https://openalex.org/C160920958 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48059365153312683 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[7].display_name | Synthetic data |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46489447355270386 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C151406439 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4573599100112915 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[9].display_name | Time series |
| concepts[10].id | https://openalex.org/C99498987 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4354349374771118 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[10].display_name | Noise (video) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40294837951660156 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3906388282775879 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C149782125 |
| concepts[13].level | 1 |
| concepts[13].score | 0.35276859998703003 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[13].display_name | Econometrics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23356398940086365 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.13481926918029785 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/identifiability |
| keywords[0].score | 0.8511085510253906 |
| keywords[0].display_name | Identifiability |
| keywords[1].id | https://openalex.org/keywords/causal-inference |
| keywords[1].score | 0.7531188726425171 |
| keywords[1].display_name | Causal inference |
| keywords[2].id | https://openalex.org/keywords/causal-model |
| keywords[2].score | 0.6395338177680969 |
| keywords[2].display_name | Causal model |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5956659913063049 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.5633493661880493 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/causal-structure |
| keywords[5].score | 0.5133373141288757 |
| keywords[5].display_name | Causal structure |
| keywords[6].id | https://openalex.org/keywords/series |
| keywords[6].score | 0.5106568932533264 |
| keywords[6].display_name | Series (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/synthetic-data |
| keywords[7].score | 0.48059365153312683 |
| keywords[7].display_name | Synthetic data |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.46489447355270386 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/time-series |
| keywords[9].score | 0.4573599100112915 |
| keywords[9].display_name | Time series |
| keywords[10].id | https://openalex.org/keywords/noise |
| keywords[10].score | 0.4354349374771118 |
| keywords[10].display_name | Noise (video) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.40294837951660156 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3906388282775879 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/econometrics |
| keywords[13].score | 0.35276859998703003 |
| keywords[13].display_name | Econometrics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.23356398940086365 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.13481926918029785 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.06312 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.06312 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.06312 |
| locations[1].id | doi:10.48550/arxiv.2310.06312 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.06312 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076874874 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sumanth Varambally |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Varambally, Sumanth |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041806431 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6074-6638 |
| authorships[1].author.display_name | Yi-An Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ma, Yi-An |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057778679 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[2].author.display_name | Rose Yu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yu, Rose |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.06312 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Discovering Mixtures of Structural Causal Models from Time Series Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W3215034539, https://openalex.org/W4313422683, https://openalex.org/W2161504683, https://openalex.org/W4386620154, https://openalex.org/W4389961576, https://openalex.org/W4294555408, https://openalex.org/W4372260129, https://openalex.org/W1153243621, https://openalex.org/W4299782962, https://openalex.org/W4386839885 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.06312 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.06312 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.06312 |
| primary_location.id | pmh:oai:arXiv.org:2310.06312 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.06312 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.06312 |
| publication_date | 2023-10-10 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 64, 71, 166 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 69, 109, 129 |
| abstract_inverted_index.an | 96, 102 |
| abstract_inverted_index.as | 12, 84, 86 |
| abstract_inverted_index.in | 9, 35, 137 |
| abstract_inverted_index.is | 7, 38 |
| abstract_inverted_index.of | 66, 90, 164 |
| abstract_inverted_index.on | 22, 144 |
| abstract_inverted_index.to | 78 |
| abstract_inverted_index.we | 50, 160 |
| abstract_inverted_index.MCD | 77 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.and | 16, 40, 54, 117, 120, 126, 146 |
| abstract_inverted_index.can | 41 |
| abstract_inverted_index.for | 105, 114, 122 |
| abstract_inverted_index.our | 132 |
| abstract_inverted_index.the | 23, 30, 80, 87, 106, 151, 162 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.data | 6, 27, 37, 61, 107, 152 |
| abstract_inverted_index.each | 91 |
| abstract_inverted_index.from | 3, 29, 43, 58, 63, 154 |
| abstract_inverted_index.mild | 170 |
| abstract_inverted_index.rely | 21 |
| abstract_inverted_index.same | 31 |
| abstract_inverted_index.some | 169 |
| abstract_inverted_index.stem | 42 |
| abstract_inverted_index.such | 11, 165 |
| abstract_inverted_index.that | 26, 100, 131 |
| abstract_inverted_index.this | 48, 52 |
| abstract_inverted_index.time | 4, 59 |
| abstract_inverted_index.well | 85 |
| abstract_inverted_index.when | 150 |
| abstract_inverted_index.bound | 104 |
| abstract_inverted_index.infer | 79 |
| abstract_inverted_index.model | 167 |
| abstract_inverted_index.prove | 161 |
| abstract_inverted_index.relax | 51 |
| abstract_inverted_index.tasks | 140 |
| abstract_inverted_index.under | 168 |
| abstract_inverted_index.while | 34 |
| abstract_inverted_index.work, | 49 |
| abstract_inverted_index.called | 76 |
| abstract_inverted_index.causal | 1, 32, 45, 56, 67, 82, 124, 138, 157 |
| abstract_inverted_index.fields | 10 |
| abstract_inverted_index.linear | 115 |
| abstract_inverted_index.method | 133 |
| abstract_inverted_index.mixing | 88 |
| abstract_inverted_index.model, | 33 |
| abstract_inverted_index.models | 83 |
| abstract_inverted_index.noise, | 119 |
| abstract_inverted_index.noise. | 128 |
| abstract_inverted_index.series | 5, 60 |
| abstract_inverted_index.climate | 14 |
| abstract_inverted_index.diverse | 155 |
| abstract_inverted_index.employs | 95 |
| abstract_inverted_index.general | 72 |
| abstract_inverted_index.graphs. | 158 |
| abstract_inverted_index.mixture | 65 |
| abstract_inverted_index.models. | 46, 68 |
| abstract_inverted_index.perform | 55 |
| abstract_inverted_index.present | 110 |
| abstract_inverted_index.process | 99 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.sample. | 92 |
| abstract_inverted_index.through | 141 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.approach | 94 |
| abstract_inverted_index.emanates | 153 |
| abstract_inverted_index.finance, | 13 |
| abstract_inverted_index.science, | 15 |
| abstract_inverted_index.training | 98 |
| abstract_inverted_index.datasets, | 148 |
| abstract_inverted_index.different | 44 |
| abstract_inverted_index.discovery | 57, 139 |
| abstract_inverted_index.extensive | 142 |
| abstract_inverted_index.framework | 75 |
| abstract_inverted_index.maximizes | 101 |
| abstract_inverted_index.nonlinear | 123 |
| abstract_inverted_index.practice, | 36 |
| abstract_inverted_index.surpasses | 134 |
| abstract_inverted_index.synthetic | 145 |
| abstract_inverted_index.variants: | 112 |
| abstract_inverted_index.MCD-Linear | 113 |
| abstract_inverted_index.assumption | 25, 53 |
| abstract_inverted_index.benchmarks | 136 |
| abstract_inverted_index.end-to-end | 97 |
| abstract_inverted_index.originates | 28 |
| abstract_inverted_index.real-world | 147 |
| abstract_inverted_index.techniques | 20 |
| abstract_inverted_index.underlying | 81, 156 |
| abstract_inverted_index.Discovering | 0 |
| abstract_inverted_index.demonstrate | 130 |
| abstract_inverted_index.independent | 118 |
| abstract_inverted_index.likelihood. | 108 |
| abstract_inverted_index.originating | 62 |
| abstract_inverted_index.probability | 89 |
| abstract_inverted_index.significant | 8 |
| abstract_inverted_index.simplifying | 24 |
| abstract_inverted_index.variational | 73 |
| abstract_inverted_index.assumptions. | 171 |
| abstract_inverted_index.contemporary | 19 |
| abstract_inverted_index.particularly | 149 |
| abstract_inverted_index.MCD-Nonlinear | 121 |
| abstract_inverted_index.heterogeneous | 39 |
| abstract_inverted_index.neuroscience. | 17 |
| abstract_inverted_index.relationships | 2, 116, 125 |
| abstract_inverted_index.Theoretically, | 159 |
| abstract_inverted_index.evidence-lower | 103 |
| abstract_inverted_index.experimentation | 143 |
| abstract_inverted_index.identifiability | 163 |
| abstract_inverted_index.inference-based | 74 |
| abstract_inverted_index.state-of-the-art | 135 |
| abstract_inverted_index.history-dependent | 127 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |