Discovering Subdimensional Motifs of Different Lengths in Large-Scale Multivariate Time Series Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1911.09218
Detecting repeating patterns of different lengths in time series, also called variable-length motifs, has received a great amount of attention by researchers and practitioners. Despite the significant progress that has been made in recent single dimensional variable-length motif discovery work, detecting variable-length \textit{subdimensional motifs}---patterns that are simultaneously occurring only in a subset of dimensions in multivariate time series---remains a difficult task. The main challenge is scalability. On the one hand, the brute-force enumeration solution, which searches for motifs of all possible lengths, is very time consuming even in single dimensional time series. On the other hand, previous work show that index-based fixed-length approximate motif discovery algorithms such as random projection are not suitable for detecting variable-length motifs due to memory requirement. In this paper, we introduce an approximate variable-length subdimensional motif discovery algorithm called \textbf{C}ollaborative \textbf{HI}erarchy based \textbf{M}otif \textbf{E}numeration (CHIME) to efficiently detect variable-length subdimensional motifs given a minimum motif length in large-scale multivariate time series. We show that the memory cost of the approach is significantly smaller than that of random projection. Moreover, the speed of the proposed algorithm is significantly faster than that of the state-of-the-art algorithms. We demonstrate that CHIME can efficiently detect meaningful variable-length subdimensional motifs in large real world multivariate time series datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1911.09218
- https://arxiv.org/pdf/1911.09218
- OA Status
- green
- Cited By
- 2
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2990500758
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2990500758Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1911.09218Digital Object Identifier
- Title
-
Discovering Subdimensional Motifs of Different Lengths in Large-Scale Multivariate Time SeriesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-20Full publication date if available
- Authors
-
Yifeng Gao, Jessica LinList of authors in order
- Landing page
-
https://arxiv.org/abs/1911.09218Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1911.09218Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1911.09218Direct OA link when available
- Concepts
-
Multivariate statistics, Random projection, Scalability, Series (stratigraphy), Variable (mathematics), Algorithm, Motif (music), Enumeration, Computer science, Mathematics, Combinatorics, Statistics, Biology, Mathematical analysis, Database, Acoustics, Paleontology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2990500758 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1911.09218 |
| ids.doi | https://doi.org/10.48550/arxiv.1911.09218 |
| ids.mag | 2990500758 |
| ids.openalex | https://openalex.org/W2990500758 |
| fwci | |
| type | preprint |
| title | Discovering Subdimensional Motifs of Different Lengths in Large-Scale Multivariate Time Series |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9595000147819519 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9395999908447266 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6140970587730408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C2777036070 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5920892953872681 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18393452 |
| concepts[1].display_name | Random projection |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.579254686832428 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C143724316 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5338460206985474 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[3].display_name | Series (stratigraphy) |
| concepts[4].id | https://openalex.org/C182365436 |
| concepts[4].level | 2 |
| concepts[4].score | 0.508630633354187 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[4].display_name | Variable (mathematics) |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4789438843727112 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C32276052 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4735245704650879 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q908349 |
| concepts[6].display_name | Motif (music) |
| concepts[7].id | https://openalex.org/C156340839 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4612480700016022 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2704791 |
| concepts[7].display_name | Enumeration |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4316611588001251 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.41226786375045776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2584133446216583 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.131311297416687 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07703369855880737 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| concepts[15].id | https://openalex.org/C24890656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[15].display_name | Acoustics |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.6140970587730408 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/random-projection |
| keywords[1].score | 0.5920892953872681 |
| keywords[1].display_name | Random projection |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.579254686832428 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/series |
| keywords[3].score | 0.5338460206985474 |
| keywords[3].display_name | Series (stratigraphy) |
| keywords[4].id | https://openalex.org/keywords/variable |
| keywords[4].score | 0.508630633354187 |
| keywords[4].display_name | Variable (mathematics) |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4789438843727112 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/motif |
| keywords[6].score | 0.4735245704650879 |
| keywords[6].display_name | Motif (music) |
| keywords[7].id | https://openalex.org/keywords/enumeration |
| keywords[7].score | 0.4612480700016022 |
| keywords[7].display_name | Enumeration |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4316611588001251 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.41226786375045776 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.2584133446216583 |
| keywords[10].display_name | Combinatorics |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.131311297416687 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.07703369855880737 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1911.09218 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1911.09218 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1911.09218 |
| locations[1].id | doi:10.48550/arxiv.1911.09218 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1911.09218 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5025224867 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0629-050X |
| authorships[0].author.display_name | Yifeng Gao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162714631 |
| authorships[0].affiliations[0].raw_affiliation_string | #N#George Mason University#N# |
| authorships[0].institutions[0].id | https://openalex.org/I162714631 |
| authorships[0].institutions[0].ror | https://ror.org/02jqj7156 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162714631 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | George Mason University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yifeng Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | #N#George Mason University#N# |
| authorships[1].author.id | https://openalex.org/A5101558875 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4887-0692 |
| authorships[1].author.display_name | Jessica Lin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162714631 |
| authorships[1].affiliations[0].raw_affiliation_string | #N#George Mason University#N# |
| authorships[1].institutions[0].id | https://openalex.org/I162714631 |
| authorships[1].institutions[0].ror | https://ror.org/02jqj7156 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162714631 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | George Mason University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jessica Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | #N#George Mason University#N# |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1911.09218 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Discovering Subdimensional Motifs of Different Lengths in Large-Scale Multivariate Time Series |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W108845024, https://openalex.org/W4300125793, https://openalex.org/W2578985712, https://openalex.org/W2406961474, https://openalex.org/W3042106073, https://openalex.org/W2143566611, https://openalex.org/W588267724, https://openalex.org/W2057205169, https://openalex.org/W4297743441, https://openalex.org/W2952598754 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1911.09218 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1911.09218 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1911.09218 |
| primary_location.id | pmh:oai:arXiv.org:1911.09218 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1911.09218 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1911.09218 |
| publication_date | 2019-11-20 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2585674079, https://openalex.org/W2152671946, https://openalex.org/W2780456139, https://openalex.org/W2171393861, https://openalex.org/W2583336059, https://openalex.org/W2534591110, https://openalex.org/W2772177579, https://openalex.org/W1513731586, https://openalex.org/W2787542756, https://openalex.org/W1988879366, https://openalex.org/W2799930898, https://openalex.org/W2006761268, https://openalex.org/W2105686649, https://openalex.org/W1978854979, https://openalex.org/W2397610501, https://openalex.org/W2798290452, https://openalex.org/W2402068992, https://openalex.org/W2313741771, https://openalex.org/W2120905266, https://openalex.org/W2049704739, https://openalex.org/W2802712044, https://openalex.org/W2898647012, https://openalex.org/W2026297770, https://openalex.org/W2220762564, https://openalex.org/W2164274563, https://openalex.org/W3019498712 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 15, 50, 58, 147 |
| abstract_inverted_index.In | 121 |
| abstract_inverted_index.On | 66, 92 |
| abstract_inverted_index.We | 156, 189 |
| abstract_inverted_index.an | 126 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 6, 32, 49, 54, 87, 151, 200 |
| abstract_inverted_index.is | 64, 82, 165, 180 |
| abstract_inverted_index.of | 3, 18, 52, 78, 162, 170, 176, 185 |
| abstract_inverted_index.to | 118, 140 |
| abstract_inverted_index.we | 124 |
| abstract_inverted_index.The | 61 |
| abstract_inverted_index.all | 79 |
| abstract_inverted_index.and | 22 |
| abstract_inverted_index.are | 45, 110 |
| abstract_inverted_index.can | 193 |
| abstract_inverted_index.due | 117 |
| abstract_inverted_index.for | 76, 113 |
| abstract_inverted_index.has | 13, 29 |
| abstract_inverted_index.not | 111 |
| abstract_inverted_index.one | 68 |
| abstract_inverted_index.the | 25, 67, 70, 93, 159, 163, 174, 177, 186 |
| abstract_inverted_index.also | 9 |
| abstract_inverted_index.been | 30 |
| abstract_inverted_index.cost | 161 |
| abstract_inverted_index.even | 86 |
| abstract_inverted_index.made | 31 |
| abstract_inverted_index.main | 62 |
| abstract_inverted_index.only | 48 |
| abstract_inverted_index.real | 202 |
| abstract_inverted_index.show | 98, 157 |
| abstract_inverted_index.such | 106 |
| abstract_inverted_index.than | 168, 183 |
| abstract_inverted_index.that | 28, 44, 99, 158, 169, 184, 191 |
| abstract_inverted_index.this | 122 |
| abstract_inverted_index.time | 7, 56, 84, 90, 154, 205 |
| abstract_inverted_index.very | 83 |
| abstract_inverted_index.work | 97 |
| abstract_inverted_index.CHIME | 192 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.given | 146 |
| abstract_inverted_index.great | 16 |
| abstract_inverted_index.hand, | 69, 95 |
| abstract_inverted_index.large | 201 |
| abstract_inverted_index.motif | 37, 103, 130, 149 |
| abstract_inverted_index.other | 94 |
| abstract_inverted_index.speed | 175 |
| abstract_inverted_index.task. | 60 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.work, | 39 |
| abstract_inverted_index.world | 203 |
| abstract_inverted_index.amount | 17 |
| abstract_inverted_index.called | 10, 133 |
| abstract_inverted_index.detect | 142, 195 |
| abstract_inverted_index.faster | 182 |
| abstract_inverted_index.length | 150 |
| abstract_inverted_index.memory | 119, 160 |
| abstract_inverted_index.motifs | 77, 116, 145, 199 |
| abstract_inverted_index.paper, | 123 |
| abstract_inverted_index.random | 108, 171 |
| abstract_inverted_index.recent | 33 |
| abstract_inverted_index.series | 206 |
| abstract_inverted_index.single | 34, 88 |
| abstract_inverted_index.subset | 51 |
| abstract_inverted_index.(CHIME) | 139 |
| abstract_inverted_index.Despite | 24 |
| abstract_inverted_index.lengths | 5 |
| abstract_inverted_index.minimum | 148 |
| abstract_inverted_index.motifs, | 12 |
| abstract_inverted_index.series, | 8 |
| abstract_inverted_index.series. | 91, 155 |
| abstract_inverted_index.smaller | 167 |
| abstract_inverted_index.approach | 164 |
| abstract_inverted_index.lengths, | 81 |
| abstract_inverted_index.patterns | 2 |
| abstract_inverted_index.possible | 80 |
| abstract_inverted_index.previous | 96 |
| abstract_inverted_index.progress | 27 |
| abstract_inverted_index.proposed | 178 |
| abstract_inverted_index.received | 14 |
| abstract_inverted_index.searches | 75 |
| abstract_inverted_index.suitable | 112 |
| abstract_inverted_index.Detecting | 0 |
| abstract_inverted_index.Moreover, | 173 |
| abstract_inverted_index.algorithm | 132, 179 |
| abstract_inverted_index.attention | 19 |
| abstract_inverted_index.challenge | 63 |
| abstract_inverted_index.consuming | 85 |
| abstract_inverted_index.datasets. | 207 |
| abstract_inverted_index.detecting | 40, 114 |
| abstract_inverted_index.different | 4 |
| abstract_inverted_index.difficult | 59 |
| abstract_inverted_index.discovery | 38, 104, 131 |
| abstract_inverted_index.introduce | 125 |
| abstract_inverted_index.occurring | 47 |
| abstract_inverted_index.repeating | 1 |
| abstract_inverted_index.solution, | 73 |
| abstract_inverted_index.algorithms | 105 |
| abstract_inverted_index.dimensions | 53 |
| abstract_inverted_index.meaningful | 196 |
| abstract_inverted_index.projection | 109 |
| abstract_inverted_index.algorithms. | 188 |
| abstract_inverted_index.approximate | 102, 127 |
| abstract_inverted_index.brute-force | 71 |
| abstract_inverted_index.demonstrate | 190 |
| abstract_inverted_index.dimensional | 35, 89 |
| abstract_inverted_index.efficiently | 141, 194 |
| abstract_inverted_index.enumeration | 72 |
| abstract_inverted_index.index-based | 100 |
| abstract_inverted_index.large-scale | 152 |
| abstract_inverted_index.projection. | 172 |
| abstract_inverted_index.researchers | 21 |
| abstract_inverted_index.significant | 26 |
| abstract_inverted_index.fixed-length | 101 |
| abstract_inverted_index.multivariate | 55, 153, 204 |
| abstract_inverted_index.requirement. | 120 |
| abstract_inverted_index.scalability. | 65 |
| abstract_inverted_index.significantly | 166, 181 |
| abstract_inverted_index.\textbf{M}otif | 137 |
| abstract_inverted_index.practitioners. | 23 |
| abstract_inverted_index.simultaneously | 46 |
| abstract_inverted_index.subdimensional | 129, 144, 198 |
| abstract_inverted_index.variable-length | 11, 36, 41, 115, 128, 143, 197 |
| abstract_inverted_index.series---remains | 57 |
| abstract_inverted_index.state-of-the-art | 187 |
| abstract_inverted_index.\textbf{HI}erarchy | 135 |
| abstract_inverted_index.motifs}---patterns | 43 |
| abstract_inverted_index.\textbf{E}numeration | 138 |
| abstract_inverted_index.\textbf{C}ollaborative | 134 |
| abstract_inverted_index.\textit{subdimensional | 42 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |