Discovering symbolic laws directly from trajectories with hamiltonian graph neural networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/ad6be6
The time evolution of physical systems is described by differential equations, which depend on abstract quantities like energy and force. Traditionally, these quantities are derived as functionals based on observables such as positions and velocities. Discovering these governing symbolic laws is the key to comprehending the interactions in nature. Here, we present a Hamiltonian graph neural network ( Hgnn ), a physics-enforced Gnn that learns the dynamics of systems directly from their trajectory. We demonstrate the performance of Hgnn on springs, pendulums, gravitational systems, and binary Lennard Jones systems; Hgnn learns the dynamics in excellent agreement with the ground truth from small amounts of data. We also evaluate the ability of Hgnn to generalize to larger system sizes, and to a hybrid spring-pendulum system that is a combination of two original systems (spring and pendulum) on which the models are trained independently. Finally, employing symbolic regression on the learned Hgnn , we infer the underlying equations relating to the energy functionals, even for complex systems such as the binary Lennard-Jones liquid. Our framework facilitates the interpretable discovery of interaction laws directly from physical system trajectories. Furthermore, this approach can be extended to other systems with topology-dependent dynamics, such as cells, polydisperse gels, or deformable bodies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/ad6be6
- https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdf
- OA Status
- gold
- Cited By
- 1
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401351787
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401351787Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/ad6be6Digital Object Identifier
- Title
-
Discovering symbolic laws directly from trajectories with hamiltonian graph neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-06Full publication date if available
- Authors
-
Suresh Bishnoi, Ravinder Bhattoo, Jayadeva Jayadeva, Sayan Ranu, N. M. Anoop KrishnanList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/ad6be6Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdfDirect OA link when available
- Concepts
-
Graph, Law, Computer science, Mathematics, Theoretical computer science, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401351787 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/ad6be6 |
| ids.doi | https://doi.org/10.1088/2632-2153/ad6be6 |
| ids.openalex | https://openalex.org/W4401351787 |
| fwci | 0.63877855 |
| type | article |
| title | Discovering symbolic laws directly from trajectories with hamiltonian graph neural networks |
| biblio.issue | 3 |
| biblio.volume | 5 |
| biblio.last_page | 035049 |
| biblio.first_page | 035049 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9915000200271606 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12292 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Graph Theory and Algorithms |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.4897603988647461 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C199539241 |
| concepts[1].level | 1 |
| concepts[1].score | 0.44301652908325195 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[1].display_name | Law |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39967456459999084 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.36343151330947876 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3623185157775879 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C17744445 |
| concepts[5].level | 0 |
| concepts[5].score | 0.19040599465370178 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[5].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.4897603988647461 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/law |
| keywords[1].score | 0.44301652908325195 |
| keywords[1].display_name | Law |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.39967456459999084 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.36343151330947876 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.3623185157775879 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/political-science |
| keywords[5].score | 0.19040599465370178 |
| keywords[5].display_name | Political science |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/ad6be6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/ad6be6 |
| locations[1].id | pmh:oai:doaj.org/article:df2f09003603451a9802e210a79c593a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning: Science and Technology, Vol 5, Iss 3, p 035049 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/df2f09003603451a9802e210a79c593a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5025656549 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6736-1754 |
| authorships[0].author.display_name | Suresh Bishnoi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Interdisciplinary Research, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[0].institutions[0].id | https://openalex.org/I68891433 |
| authorships[0].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suresh Bishnoi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Interdisciplinary Research, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[1].author.id | https://openalex.org/A5006461542 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ravinder Bhattoo |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[1].institutions[0].id | https://openalex.org/I68891433 |
| authorships[1].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ravinder Bhattoo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[2].author.id | https://openalex.org/A5059022081 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jayadeva Jayadeva |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[2].institutions[0].id | https://openalex.org/I68891433 |
| authorships[2].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Jayadeva |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[3].author.id | https://openalex.org/A5054697900 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4147-9372 |
| authorships[3].author.display_name | Sayan Ranu |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[3].institutions[0].id | https://openalex.org/I68891433 |
| authorships[3].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sayan Ranu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[4].author.id | https://openalex.org/A5065129881 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1500-4947 |
| authorships[4].author.display_name | N. M. Anoop Krishnan |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I68891433 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| authorships[4].institutions[0].id | https://openalex.org/I68891433 |
| authorships[4].institutions[0].ror | https://ror.org/049tgcd06 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I68891433 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Institute of Technology Delhi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | N M Anoop Krishnan |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Civil Engineering, IIT Delhi, Hauz Khas, New Delhi, New Delhi, Delhi, 110016, INDIA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Discovering symbolic laws directly from trajectories with hamiltonian graph neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/2632-2153/ad6be6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/ad6be6 |
| primary_location.id | doi:10.1088/2632-2153/ad6be6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.1088/2632-2153/ad6be6/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/ad6be6 |
| publication_date | 2024-08-06 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1979769287, https://openalex.org/W3016401366, https://openalex.org/W4365145591, https://openalex.org/W3100050954, https://openalex.org/W3213311349, https://openalex.org/W6852384925, https://openalex.org/W6780561946, https://openalex.org/W3163993681, https://openalex.org/W3014178136, https://openalex.org/W3163857962, https://openalex.org/W2059100041, https://openalex.org/W6774033856, https://openalex.org/W3110785006, https://openalex.org/W6775127026, https://openalex.org/W6784408391, https://openalex.org/W6758539823, https://openalex.org/W6810393319, https://openalex.org/W3042069397, https://openalex.org/W6768331551, https://openalex.org/W6763340073, https://openalex.org/W3007175346, https://openalex.org/W6752307458, https://openalex.org/W6846342897, https://openalex.org/W2116341502, https://openalex.org/W4313592055, https://openalex.org/W6843469111, https://openalex.org/W4229028112, https://openalex.org/W2111759950, https://openalex.org/W2076602180, https://openalex.org/W2767056974, https://openalex.org/W2810873206, https://openalex.org/W4225405705, https://openalex.org/W3080563147, https://openalex.org/W6785566885, https://openalex.org/W3007913393, https://openalex.org/W4288102126, https://openalex.org/W4297163657, https://openalex.org/W4205254860, https://openalex.org/W4295371972, https://openalex.org/W4321361265, https://openalex.org/W3021457401, https://openalex.org/W4368303491, https://openalex.org/W2948680363, https://openalex.org/W4308829550, https://openalex.org/W2962730452, https://openalex.org/W3036548566, https://openalex.org/W3100753213, https://openalex.org/W4225983190, https://openalex.org/W2963755523 |
| referenced_works_count | 49 |
| abstract_inverted_index.( | 58 |
| abstract_inverted_index., | 167 |
| abstract_inverted_index.a | 53, 61, 137, 143 |
| abstract_inverted_index.), | 60 |
| abstract_inverted_index.We | 74, 122 |
| abstract_inverted_index.as | 26, 32, 183, 215 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 48, 110 |
| abstract_inverted_index.is | 7, 41, 142 |
| abstract_inverted_index.of | 4, 68, 78, 120, 127, 145, 194 |
| abstract_inverted_index.on | 14, 29, 80, 152, 163 |
| abstract_inverted_index.or | 219 |
| abstract_inverted_index.to | 44, 129, 131, 136, 174, 208 |
| abstract_inverted_index.we | 51, 168 |
| abstract_inverted_index.Gnn | 63 |
| abstract_inverted_index.Our | 188 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 19, 34, 101, 135, 150 |
| abstract_inverted_index.are | 24, 156 |
| abstract_inverted_index.can | 205 |
| abstract_inverted_index.for | 179 |
| abstract_inverted_index.key | 43 |
| abstract_inverted_index.the | 42, 46, 66, 76, 108, 114, 125, 154, 164, 170, 175, 184, 191 |
| abstract_inverted_index.two | 146 |
| abstract_inverted_index.Hgnn | 59, 79, 106, 128, 166 |
| abstract_inverted_index.also | 123 |
| abstract_inverted_index.even | 178 |
| abstract_inverted_index.from | 71, 117, 198 |
| abstract_inverted_index.laws | 40, 196 |
| abstract_inverted_index.like | 17 |
| abstract_inverted_index.such | 31, 182, 214 |
| abstract_inverted_index.that | 64, 141 |
| abstract_inverted_index.this | 203 |
| abstract_inverted_index.time | 2 |
| abstract_inverted_index.with | 113, 211 |
| abstract_inverted_index.Here, | 50 |
| abstract_inverted_index.Jones | 104 |
| abstract_inverted_index.based | 28 |
| abstract_inverted_index.data. | 121 |
| abstract_inverted_index.gels, | 218 |
| abstract_inverted_index.graph | 55 |
| abstract_inverted_index.infer | 169 |
| abstract_inverted_index.other | 209 |
| abstract_inverted_index.small | 118 |
| abstract_inverted_index.their | 72 |
| abstract_inverted_index.these | 22, 37 |
| abstract_inverted_index.truth | 116 |
| abstract_inverted_index.which | 12, 153 |
| abstract_inverted_index.binary | 102, 185 |
| abstract_inverted_index.cells, | 216 |
| abstract_inverted_index.depend | 13 |
| abstract_inverted_index.energy | 18, 176 |
| abstract_inverted_index.force. | 20 |
| abstract_inverted_index.ground | 115 |
| abstract_inverted_index.hybrid | 138 |
| abstract_inverted_index.larger | 132 |
| abstract_inverted_index.learns | 65, 107 |
| abstract_inverted_index.models | 155 |
| abstract_inverted_index.neural | 56 |
| abstract_inverted_index.sizes, | 134 |
| abstract_inverted_index.system | 133, 140, 200 |
| abstract_inverted_index.(spring | 149 |
| abstract_inverted_index.Lennard | 103 |
| abstract_inverted_index.ability | 126 |
| abstract_inverted_index.amounts | 119 |
| abstract_inverted_index.bodies. | 221 |
| abstract_inverted_index.complex | 180 |
| abstract_inverted_index.derived | 25 |
| abstract_inverted_index.learned | 165 |
| abstract_inverted_index.liquid. | 187 |
| abstract_inverted_index.nature. | 49 |
| abstract_inverted_index.network | 57 |
| abstract_inverted_index.present | 52 |
| abstract_inverted_index.systems | 6, 69, 148, 181, 210 |
| abstract_inverted_index.trained | 157 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 159 |
| abstract_inverted_index.abstract | 15 |
| abstract_inverted_index.approach | 204 |
| abstract_inverted_index.directly | 70, 197 |
| abstract_inverted_index.dynamics | 67, 109 |
| abstract_inverted_index.evaluate | 124 |
| abstract_inverted_index.extended | 207 |
| abstract_inverted_index.original | 147 |
| abstract_inverted_index.physical | 5, 199 |
| abstract_inverted_index.relating | 173 |
| abstract_inverted_index.springs, | 89 |
| abstract_inverted_index.symbolic | 39, 161 |
| abstract_inverted_index.systems, | 100 |
| abstract_inverted_index.systems; | 105 |
| abstract_inverted_index.<mml:math | 81, 90 |
| abstract_inverted_index.agreement | 112 |
| abstract_inverted_index.described | 8 |
| abstract_inverted_index.discovery | 193 |
| abstract_inverted_index.dynamics, | 213 |
| abstract_inverted_index.employing | 160 |
| abstract_inverted_index.equations | 172 |
| abstract_inverted_index.evolution | 3 |
| abstract_inverted_index.excellent | 111 |
| abstract_inverted_index.framework | 189 |
| abstract_inverted_index.governing | 38 |
| abstract_inverted_index.pendulum) | 151 |
| abstract_inverted_index.positions | 33 |
| abstract_inverted_index.<mml:mrow> | 84, 93 |
| abstract_inverted_index.deformable | 220 |
| abstract_inverted_index.equations, | 11 |
| abstract_inverted_index.generalize | 130 |
| abstract_inverted_index.pendulums, | 98 |
| abstract_inverted_index.quantities | 16, 23 |
| abstract_inverted_index.regression | 162 |
| abstract_inverted_index.underlying | 171 |
| abstract_inverted_index.</mml:math> | 88, 97 |
| abstract_inverted_index.</mml:mrow> | 87, 96 |
| abstract_inverted_index.Discovering | 36 |
| abstract_inverted_index.Hamiltonian | 54 |
| abstract_inverted_index.combination | 144 |
| abstract_inverted_index.demonstrate | 75 |
| abstract_inverted_index.facilitates | 190 |
| abstract_inverted_index.functionals | 27 |
| abstract_inverted_index.interaction | 195 |
| abstract_inverted_index.observables | 30 |
| abstract_inverted_index.performance | 77 |
| abstract_inverted_index.trajectory. | 73 |
| abstract_inverted_index.velocities. | 35 |
| abstract_inverted_index.Furthermore, | 202 |
| abstract_inverted_index.differential | 10 |
| abstract_inverted_index.functionals, | 177 |
| abstract_inverted_index.interactions | 47 |
| abstract_inverted_index.polydisperse | 217 |
| abstract_inverted_index.Lennard-Jones | 186 |
| abstract_inverted_index.comprehending | 45 |
| abstract_inverted_index.gravitational | 99 |
| abstract_inverted_index.interpretable | 192 |
| abstract_inverted_index.trajectories. | 201 |
| abstract_inverted_index.Traditionally, | 21 |
| abstract_inverted_index.independently. | 158 |
| abstract_inverted_index.spring-pendulum | 139 |
| abstract_inverted_index.physics-enforced | 62 |
| abstract_inverted_index.<mml:mi>n</mml:mi> | 85, 94 |
| abstract_inverted_index.overflow="scroll"> | 83, 92 |
| abstract_inverted_index.topology-dependent | 212 |
| abstract_inverted_index.<mml:mo>−</mml:mo> | 86, 95 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 82, 91 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5065129881 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I68891433 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.69334526 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |