Disentangling Selection Into Mode From Mode Effects Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/geronb/gbae140
Objectives We investigate the impact of data collection mode on responses to variables in the National Social Life, Health, and Aging Project (NSHAP) Round 4 and discuss how potential mode differences should (and should not) be addressed in substantive analyses. Methods Among the set of respondents who were eligible to be contacted remotely in Round 4, we randomly selected 398 to be contacted instead for an in-person interview. We compare response rates and the distributions of selected key outcomes among those 398 respondents to those among the control group who were initially approached remotely. In contrast, we compared all R4 respondents according to the mode in which they completed the interview, including those not part of the randomized experiment. Results Among those included in the experiment, there was no evidence of systematic differences in responses to physical and mental health questions between remote and in-person modes, nor in responses to number recall measures. In-person respondents scored moderately lower on cognitive function measures requiring careful attention to a figure and/or task, though this difference became less with each similar item. Remote respondents named fewer social network members. Comparing all respondents according to their final mode yielded substantially different results in all cases. Discussion Mode did not appear to affect reports of physical and mental health based on a randomized comparison, though it did moderately affect other items in predictable ways. Naïve estimates of mode effects based on comparing all respondents according to mode yielded misleading results, and should not be used to adjust for mode differences in analyses.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/geronb/gbae140
- OA Status
- green
- Cited By
- 2
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401727950
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401727950Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/geronb/gbae140Digital Object Identifier
- Title
-
Disentangling Selection Into Mode From Mode EffectsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-21Full publication date if available
- Authors
-
Colm O’Muircheartaigh, L. Philip Schumm, Ned English, Becki CurtisList of authors in order
- Landing page
-
https://doi.org/10.1093/geronb/gbae140Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11742138Direct OA link when available
- Concepts
-
Mode (computer interface), Selection (genetic algorithm), Computer science, Artificial intelligence, Human–computer interactionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401727950 |
|---|---|
| doi | https://doi.org/10.1093/geronb/gbae140 |
| ids.doi | https://doi.org/10.1093/geronb/gbae140 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39164215 |
| ids.openalex | https://openalex.org/W4401727950 |
| fwci | 3.06580092 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008297 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Male |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005260 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Female |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000368 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Aged |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D007407 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Interviews as Topic |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008875 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Middle Aged |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D006306 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Health Surveys |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D014481 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | United States |
| mesh[8].qualifier_ui | Q000523 |
| mesh[8].descriptor_ui | D000375 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | psychology |
| mesh[8].descriptor_name | Aging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000369 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Aged, 80 and over |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008297 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Male |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D005260 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Female |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000368 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Aged |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D007407 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Interviews as Topic |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008875 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Middle Aged |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D006306 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Health Surveys |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D014481 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | United States |
| mesh[18].qualifier_ui | Q000523 |
| mesh[18].descriptor_ui | D000375 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | psychology |
| mesh[18].descriptor_name | Aging |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000369 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Aged, 80 and over |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000368 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Aged |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D008297 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Male |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D005260 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Female |
| mesh[24].qualifier_ui | Q000523 |
| mesh[24].descriptor_ui | D000375 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | psychology |
| mesh[24].descriptor_name | Aging |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D003625 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Data Collection |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D008875 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Middle Aged |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D006306 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Health Surveys |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D006304 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Health Status |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000369 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Aged, 80 and over |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D014481 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | United States |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D007407 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Interviews as Topic |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D008603 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Mental Health |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D006801 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Humans |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000368 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Aged |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008297 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Male |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D005260 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Female |
| mesh[37].qualifier_ui | Q000523 |
| mesh[37].descriptor_ui | D000375 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | psychology |
| mesh[37].descriptor_name | Aging |
| mesh[38].qualifier_ui | Q000379 |
| mesh[38].descriptor_ui | D003625 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | methods |
| mesh[38].descriptor_name | Data Collection |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D008875 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Middle Aged |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D006306 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Health Surveys |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D006304 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Health Status |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D000369 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Aged, 80 and over |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D014481 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | United States |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D007407 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Interviews as Topic |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D008603 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Mental Health |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D006801 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Humans |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D000368 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Aged |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D008297 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Male |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D005260 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Female |
| type | article |
| title | Disentangling Selection Into Mode From Mode Effects |
| awards[0].id | https://openalex.org/G6670192771 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01 AG048511 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G2551531321 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01 AG043538 |
| awards[1].funder_display_name | National Institutes of Health |
| biblio.issue | Supplement_1 |
| biblio.volume | 80 |
| biblio.last_page | S16 |
| biblio.first_page | S8 |
| topics[0].id | https://openalex.org/T13030 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9750000238418579 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Survey Sampling and Estimation Techniques |
| topics[1].id | https://openalex.org/T10167 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9732000231742859 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Influenza Virus Research Studies |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337337 |
| funders[1].ror | https://ror.org/049v75w11 |
| funders[1].display_name | National Institute on Aging |
| is_xpac | False |
| apc_list.value | 4198 |
| apc_list.currency | USD |
| apc_list.value_usd | 4198 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48677424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6888881921768188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6888088 |
| concepts[0].display_name | Mode (computer interface) |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.678692638874054 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47200605273246765 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.17130312323570251 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C107457646 |
| concepts[4].level | 1 |
| concepts[4].score | 0.06536781787872314 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[4].display_name | Human–computer interaction |
| keywords[0].id | https://openalex.org/keywords/mode |
| keywords[0].score | 0.6888881921768188 |
| keywords[0].display_name | Mode (computer interface) |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.678692638874054 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47200605273246765 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.17130312323570251 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[4].score | 0.06536781787872314 |
| keywords[4].display_name | Human–computer interaction |
| language | en |
| locations[0].id | doi:10.1093/geronb/gbae140 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2735447094 |
| locations[0].source.issn | 1079-5014, 1758-5368 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1079-5014 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Journals of Gerontology Series B |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences |
| locations[0].landing_page_url | https://doi.org/10.1093/geronb/gbae140 |
| locations[1].id | pmid:39164215 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | The journals of gerontology. Series B, Psychological sciences and social sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39164215 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11742138 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Gerontol B Psychol Sci Soc Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11742138 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5112171110 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Colm O’Muircheartaigh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40347166 |
| authorships[0].affiliations[0].raw_affiliation_string | Harris School of Public Policy, University of Chicago , Chicago, Illinois , |
| authorships[0].institutions[0].id | https://openalex.org/I40347166 |
| authorships[0].institutions[0].ror | https://ror.org/024mw5h28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I40347166 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Chicago |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Colm O’Muircheartaigh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Harris School of Public Policy, University of Chicago , Chicago, Illinois , |
| authorships[1].author.id | https://openalex.org/A5051687315 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3050-2429 |
| authorships[1].author.display_name | L. Philip Schumm |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40347166 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Translational Data Science, University of Chicago , Chicago, Illinois , |
| authorships[1].institutions[0].id | https://openalex.org/I40347166 |
| authorships[1].institutions[0].ror | https://ror.org/024mw5h28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I40347166 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Chicago |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | L Philip Schumm |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Translational Data Science, University of Chicago , Chicago, Illinois , |
| authorships[2].author.id | https://openalex.org/A5051073812 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1945-6601 |
| authorships[2].author.display_name | Ned English |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I40347166 |
| authorships[2].affiliations[0].raw_affiliation_string | Methodology and Quantitative Social Sciences, NORC at the University of Chicago , Chicago, Illinois , |
| authorships[2].institutions[0].id | https://openalex.org/I40347166 |
| authorships[2].institutions[0].ror | https://ror.org/024mw5h28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I40347166 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Chicago |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ned English |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Methodology and Quantitative Social Sciences, NORC at the University of Chicago , Chicago, Illinois , |
| authorships[3].author.id | https://openalex.org/A5106625581 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Becki Curtis |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I40347166 |
| authorships[3].affiliations[0].raw_affiliation_string | Methodology and Quantitative Social Sciences, NORC at the University of Chicago , Chicago, Illinois , |
| authorships[3].institutions[0].id | https://openalex.org/I40347166 |
| authorships[3].institutions[0].ror | https://ror.org/024mw5h28 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I40347166 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Chicago |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Becki Curtis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Methodology and Quantitative Social Sciences, NORC at the University of Chicago , Chicago, Illinois , |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11742138 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-08-22T00:00:00 |
| display_name | Disentangling Selection Into Mode From Mode Effects |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13030 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9750000238418579 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Survey Sampling and Estimation Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W1788667622 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11742138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Gerontol B Psychol Sci Soc Sci |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11742138 |
| primary_location.id | doi:10.1093/geronb/gbae140 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2735447094 |
| primary_location.source.issn | 1079-5014, 1758-5368 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1079-5014 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Journals of Gerontology Series B |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences |
| primary_location.landing_page_url | https://doi.org/10.1093/geronb/gbae140 |
| publication_date | 2024-08-21 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2105385496, https://openalex.org/W2148709190, https://openalex.org/W4391668179, https://openalex.org/W2929397937, https://openalex.org/W4240482437, https://openalex.org/W2117152544, https://openalex.org/W2419615724, https://openalex.org/W2080869763, https://openalex.org/W2169829855, https://openalex.org/W2113020419, https://openalex.org/W3008390787, https://openalex.org/W2095644015, https://openalex.org/W2015764123, https://openalex.org/W4200095272, https://openalex.org/W2800865258, https://openalex.org/W2037209157, https://openalex.org/W2313821554 |
| referenced_works_count | 17 |
| abstract_inverted_index.4 | 25 |
| abstract_inverted_index.a | 167, 217 |
| abstract_inverted_index.4, | 56 |
| abstract_inverted_index.In | 95 |
| abstract_inverted_index.R4 | 100 |
| abstract_inverted_index.We | 2, 69 |
| abstract_inverted_index.an | 66 |
| abstract_inverted_index.be | 36, 51, 62, 249 |
| abstract_inverted_index.in | 14, 38, 54, 106, 124, 134, 148, 199, 227, 256 |
| abstract_inverted_index.it | 221 |
| abstract_inverted_index.no | 129 |
| abstract_inverted_index.of | 6, 45, 76, 116, 131, 210, 232 |
| abstract_inverted_index.on | 10, 159, 216, 236 |
| abstract_inverted_index.to | 12, 50, 61, 84, 103, 136, 150, 166, 191, 207, 241, 251 |
| abstract_inverted_index.we | 57, 97 |
| abstract_inverted_index.398 | 60, 82 |
| abstract_inverted_index.all | 99, 188, 200, 238 |
| abstract_inverted_index.and | 20, 26, 73, 138, 144, 212, 246 |
| abstract_inverted_index.did | 204, 222 |
| abstract_inverted_index.for | 65, 253 |
| abstract_inverted_index.how | 28 |
| abstract_inverted_index.key | 78 |
| abstract_inverted_index.nor | 147 |
| abstract_inverted_index.not | 114, 205, 248 |
| abstract_inverted_index.set | 44 |
| abstract_inverted_index.the | 4, 15, 43, 74, 87, 104, 110, 117, 125 |
| abstract_inverted_index.was | 128 |
| abstract_inverted_index.who | 47, 90 |
| abstract_inverted_index.(and | 33 |
| abstract_inverted_index.Mode | 203 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.each | 177 |
| abstract_inverted_index.less | 175 |
| abstract_inverted_index.mode | 9, 30, 105, 194, 233, 242, 254 |
| abstract_inverted_index.not) | 35 |
| abstract_inverted_index.part | 115 |
| abstract_inverted_index.they | 108 |
| abstract_inverted_index.this | 172 |
| abstract_inverted_index.used | 250 |
| abstract_inverted_index.were | 48, 91 |
| abstract_inverted_index.with | 176 |
| abstract_inverted_index.Aging | 21 |
| abstract_inverted_index.Among | 42, 121 |
| abstract_inverted_index.Life, | 18 |
| abstract_inverted_index.Round | 24, 55 |
| abstract_inverted_index.among | 80, 86 |
| abstract_inverted_index.based | 215, 235 |
| abstract_inverted_index.fewer | 183 |
| abstract_inverted_index.final | 193 |
| abstract_inverted_index.group | 89 |
| abstract_inverted_index.item. | 179 |
| abstract_inverted_index.items | 226 |
| abstract_inverted_index.lower | 158 |
| abstract_inverted_index.named | 182 |
| abstract_inverted_index.other | 225 |
| abstract_inverted_index.rates | 72 |
| abstract_inverted_index.task, | 170 |
| abstract_inverted_index.their | 192 |
| abstract_inverted_index.there | 127 |
| abstract_inverted_index.those | 81, 85, 113, 122 |
| abstract_inverted_index.ways. | 229 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.Naïve | 230 |
| abstract_inverted_index.Remote | 180 |
| abstract_inverted_index.Social | 17 |
| abstract_inverted_index.adjust | 252 |
| abstract_inverted_index.affect | 208, 224 |
| abstract_inverted_index.and/or | 169 |
| abstract_inverted_index.appear | 206 |
| abstract_inverted_index.became | 174 |
| abstract_inverted_index.cases. | 201 |
| abstract_inverted_index.figure | 168 |
| abstract_inverted_index.health | 140, 214 |
| abstract_inverted_index.impact | 5 |
| abstract_inverted_index.mental | 139, 213 |
| abstract_inverted_index.modes, | 146 |
| abstract_inverted_index.number | 151 |
| abstract_inverted_index.recall | 152 |
| abstract_inverted_index.remote | 143 |
| abstract_inverted_index.scored | 156 |
| abstract_inverted_index.should | 32, 34, 247 |
| abstract_inverted_index.social | 184 |
| abstract_inverted_index.though | 171, 220 |
| abstract_inverted_index.(NSHAP) | 23 |
| abstract_inverted_index.Health, | 19 |
| abstract_inverted_index.Methods | 41 |
| abstract_inverted_index.Project | 22 |
| abstract_inverted_index.Results | 120 |
| abstract_inverted_index.between | 142 |
| abstract_inverted_index.careful | 164 |
| abstract_inverted_index.compare | 70 |
| abstract_inverted_index.control | 88 |
| abstract_inverted_index.discuss | 27 |
| abstract_inverted_index.effects | 234 |
| abstract_inverted_index.instead | 64 |
| abstract_inverted_index.network | 185 |
| abstract_inverted_index.reports | 209 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.similar | 178 |
| abstract_inverted_index.yielded | 195, 243 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.National | 16 |
| abstract_inverted_index.compared | 98 |
| abstract_inverted_index.eligible | 49 |
| abstract_inverted_index.evidence | 130 |
| abstract_inverted_index.function | 161 |
| abstract_inverted_index.included | 123 |
| abstract_inverted_index.measures | 162 |
| abstract_inverted_index.members. | 186 |
| abstract_inverted_index.outcomes | 79 |
| abstract_inverted_index.physical | 137, 211 |
| abstract_inverted_index.randomly | 58 |
| abstract_inverted_index.remotely | 53 |
| abstract_inverted_index.response | 71 |
| abstract_inverted_index.results, | 245 |
| abstract_inverted_index.selected | 59, 77 |
| abstract_inverted_index.Comparing | 187 |
| abstract_inverted_index.In-person | 154 |
| abstract_inverted_index.according | 102, 190, 240 |
| abstract_inverted_index.addressed | 37 |
| abstract_inverted_index.analyses. | 40, 257 |
| abstract_inverted_index.attention | 165 |
| abstract_inverted_index.cognitive | 160 |
| abstract_inverted_index.comparing | 237 |
| abstract_inverted_index.completed | 109 |
| abstract_inverted_index.contacted | 52, 63 |
| abstract_inverted_index.contrast, | 96 |
| abstract_inverted_index.different | 197 |
| abstract_inverted_index.estimates | 231 |
| abstract_inverted_index.in-person | 67, 145 |
| abstract_inverted_index.including | 112 |
| abstract_inverted_index.initially | 92 |
| abstract_inverted_index.measures. | 153 |
| abstract_inverted_index.potential | 29 |
| abstract_inverted_index.questions | 141 |
| abstract_inverted_index.remotely. | 94 |
| abstract_inverted_index.requiring | 163 |
| abstract_inverted_index.responses | 11, 135, 149 |
| abstract_inverted_index.variables | 13 |
| abstract_inverted_index.Discussion | 202 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.approached | 93 |
| abstract_inverted_index.collection | 8 |
| abstract_inverted_index.difference | 173 |
| abstract_inverted_index.interview, | 111 |
| abstract_inverted_index.interview. | 68 |
| abstract_inverted_index.misleading | 244 |
| abstract_inverted_index.moderately | 157, 223 |
| abstract_inverted_index.randomized | 118, 218 |
| abstract_inverted_index.systematic | 132 |
| abstract_inverted_index.comparison, | 219 |
| abstract_inverted_index.differences | 31, 133, 255 |
| abstract_inverted_index.experiment, | 126 |
| abstract_inverted_index.experiment. | 119 |
| abstract_inverted_index.investigate | 3 |
| abstract_inverted_index.predictable | 228 |
| abstract_inverted_index.respondents | 46, 83, 101, 155, 181, 189, 239 |
| abstract_inverted_index.substantive | 39 |
| abstract_inverted_index.distributions | 75 |
| abstract_inverted_index.substantially | 196 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.85960723 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |