Disentangling the Prosody and Semantic Information with Pre-trained Model for In-Context Learning based Zero-Shot Voice Conversion Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.05004
Voice conversion (VC) aims to modify the speaker's timbre while retaining speech content. Previous approaches have tokenized the outputs from self-supervised into semantic tokens, facilitating disentanglement of speech content information. Recently, in-context learning (ICL) has emerged in text-to-speech (TTS) systems for effectively modeling specific characteristics such as timbre through context conditioning. This paper proposes an ICL capability enhanced VC system (ICL-VC) employing a mask and reconstruction training strategy based on flow-matching generative models. Augmented with semantic tokens, our experiments on the LibriTTS dataset demonstrate that ICL-VC improves speaker similarity. Additionally, we find that k-means is a versatile tokenization method applicable to various pre-trained models. However, the ICL-VC system faces challenges in preserving the prosody of the source speech. To mitigate this issue, we propose incorporating prosody embeddings extracted from a pre-trained emotion recognition model into our system. Integration of prosody embeddings notably enhances the system's capability to preserve source speech prosody, as validated on the Emotional Speech Database.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.05004
- https://arxiv.org/pdf/2409.05004
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403590122
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403590122Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.05004Digital Object Identifier
- Title
-
Disentangling the Prosody and Semantic Information with Pre-trained Model for In-Context Learning based Zero-Shot Voice ConversionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-08Full publication date if available
- Authors
-
Zhengyang Chen, Shuai Wang, Mingyang Zhang, Xuechen Liu, Junichi Yamagishi, Yanmin QianList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.05004Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.05004Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.05004Direct OA link when available
- Concepts
-
Prosody, Zero (linguistics), Context (archaeology), Natural language processing, Computer science, Shot (pellet), Speech recognition, Artificial intelligence, Linguistics, Psychology, History, Organic chemistry, Archaeology, Philosophy, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403590122 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.05004 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.05004 |
| ids.openalex | https://openalex.org/W4403590122 |
| fwci | |
| type | preprint |
| title | Disentangling the Prosody and Semantic Information with Pre-trained Model for In-Context Learning based Zero-Shot Voice Conversion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9882000088691711 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C542774811 |
| concepts[0].level | 2 |
| concepts[0].score | 0.810196042060852 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10880526 |
| concepts[0].display_name | Prosody |
| concepts[1].id | https://openalex.org/C2780813799 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7463643550872803 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3274237 |
| concepts[1].display_name | Zero (linguistics) |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6234064102172852 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5354601740837097 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5179173350334167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2778344882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4678158462047577 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[5].display_name | Shot (pellet) |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45178329944610596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42458418011665344 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36217665672302246 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3576141893863678 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C95457728 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1206730306148529 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[10].display_name | History |
| concepts[11].id | https://openalex.org/C178790620 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[11].display_name | Organic chemistry |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/prosody |
| keywords[0].score | 0.810196042060852 |
| keywords[0].display_name | Prosody |
| keywords[1].id | https://openalex.org/keywords/zero |
| keywords[1].score | 0.7463643550872803 |
| keywords[1].display_name | Zero (linguistics) |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6234064102172852 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.5354601740837097 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5179173350334167 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/shot |
| keywords[5].score | 0.4678158462047577 |
| keywords[5].display_name | Shot (pellet) |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.45178329944610596 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.42458418011665344 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/linguistics |
| keywords[8].score | 0.36217665672302246 |
| keywords[8].display_name | Linguistics |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.3576141893863678 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/history |
| keywords[10].score | 0.1206730306148529 |
| keywords[10].display_name | History |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.05004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.05004 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.05004 |
| locations[1].id | doi:10.48550/arxiv.2409.05004 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.05004 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101416769 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1293-8146 |
| authorships[0].author.display_name | Zhengyang Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Zhengyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115695505 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5653-7195 |
| authorships[1].author.display_name | Shuai Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Shuai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100432825 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-2291-5089 |
| authorships[2].author.display_name | Mingyang Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Mingyang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5014303571 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1207-5651 |
| authorships[3].author.display_name | Xuechen Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Xuechen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007639385 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2752-3955 |
| authorships[4].author.display_name | Junichi Yamagishi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yamagishi, Junichi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100341993 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0314-3790 |
| authorships[5].author.display_name | Yanmin Qian |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qian, Yanmin |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.05004 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-22T00:00:00 |
| display_name | Disentangling the Prosody and Semantic Information with Pre-trained Model for In-Context Learning based Zero-Shot Voice Conversion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9882000088691711 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2355553914, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W149862513, https://openalex.org/W2347684782, https://openalex.org/W187117048 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.05004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.05004 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.05004 |
| primary_location.id | pmh:oai:arXiv.org:2409.05004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.05004 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.05004 |
| publication_date | 2024-09-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 95, 129 |
| abstract_inverted_index.To | 118 |
| abstract_inverted_index.VC | 58 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.as | 46, 151 |
| abstract_inverted_index.in | 36, 110 |
| abstract_inverted_index.is | 94 |
| abstract_inverted_index.of | 26, 114, 138 |
| abstract_inverted_index.on | 69, 79, 153 |
| abstract_inverted_index.to | 4, 100, 146 |
| abstract_inverted_index.we | 90, 122 |
| abstract_inverted_index.ICL | 55 |
| abstract_inverted_index.and | 64 |
| abstract_inverted_index.for | 40 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.our | 77, 135 |
| abstract_inverted_index.the | 6, 17, 80, 105, 112, 115, 143, 154 |
| abstract_inverted_index.(VC) | 2 |
| abstract_inverted_index.This | 51 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.find | 91 |
| abstract_inverted_index.from | 19, 128 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.into | 21, 134 |
| abstract_inverted_index.mask | 63 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.that | 84, 92 |
| abstract_inverted_index.this | 120 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.(ICL) | 33 |
| abstract_inverted_index.(TTS) | 38 |
| abstract_inverted_index.Voice | 0 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.faces | 108 |
| abstract_inverted_index.model | 133 |
| abstract_inverted_index.paper | 52 |
| abstract_inverted_index.while | 9 |
| abstract_inverted_index.ICL-VC | 85, 106 |
| abstract_inverted_index.Speech | 156 |
| abstract_inverted_index.issue, | 121 |
| abstract_inverted_index.method | 98 |
| abstract_inverted_index.modify | 5 |
| abstract_inverted_index.source | 116, 148 |
| abstract_inverted_index.speech | 11, 27, 149 |
| abstract_inverted_index.system | 59, 107 |
| abstract_inverted_index.timbre | 8, 47 |
| abstract_inverted_index.content | 28 |
| abstract_inverted_index.context | 49 |
| abstract_inverted_index.dataset | 82 |
| abstract_inverted_index.emerged | 35 |
| abstract_inverted_index.emotion | 131 |
| abstract_inverted_index.k-means | 93 |
| abstract_inverted_index.models. | 72, 103 |
| abstract_inverted_index.notably | 141 |
| abstract_inverted_index.outputs | 18 |
| abstract_inverted_index.propose | 123 |
| abstract_inverted_index.prosody | 113, 125, 139 |
| abstract_inverted_index.speaker | 87 |
| abstract_inverted_index.speech. | 117 |
| abstract_inverted_index.system. | 136 |
| abstract_inverted_index.systems | 39 |
| abstract_inverted_index.through | 48 |
| abstract_inverted_index.tokens, | 23, 76 |
| abstract_inverted_index.various | 101 |
| abstract_inverted_index.(ICL-VC) | 60 |
| abstract_inverted_index.However, | 104 |
| abstract_inverted_index.LibriTTS | 81 |
| abstract_inverted_index.Previous | 13 |
| abstract_inverted_index.content. | 12 |
| abstract_inverted_index.enhanced | 57 |
| abstract_inverted_index.enhances | 142 |
| abstract_inverted_index.improves | 86 |
| abstract_inverted_index.learning | 32 |
| abstract_inverted_index.mitigate | 119 |
| abstract_inverted_index.modeling | 42 |
| abstract_inverted_index.preserve | 147 |
| abstract_inverted_index.proposes | 53 |
| abstract_inverted_index.prosody, | 150 |
| abstract_inverted_index.semantic | 22, 75 |
| abstract_inverted_index.specific | 43 |
| abstract_inverted_index.strategy | 67 |
| abstract_inverted_index.system's | 144 |
| abstract_inverted_index.training | 66 |
| abstract_inverted_index.Augmented | 73 |
| abstract_inverted_index.Database. | 157 |
| abstract_inverted_index.Emotional | 155 |
| abstract_inverted_index.Recently, | 30 |
| abstract_inverted_index.employing | 61 |
| abstract_inverted_index.extracted | 127 |
| abstract_inverted_index.retaining | 10 |
| abstract_inverted_index.speaker's | 7 |
| abstract_inverted_index.tokenized | 16 |
| abstract_inverted_index.validated | 152 |
| abstract_inverted_index.versatile | 96 |
| abstract_inverted_index.applicable | 99 |
| abstract_inverted_index.approaches | 14 |
| abstract_inverted_index.capability | 56, 145 |
| abstract_inverted_index.challenges | 109 |
| abstract_inverted_index.conversion | 1 |
| abstract_inverted_index.embeddings | 126, 140 |
| abstract_inverted_index.generative | 71 |
| abstract_inverted_index.in-context | 31 |
| abstract_inverted_index.preserving | 111 |
| abstract_inverted_index.Integration | 137 |
| abstract_inverted_index.demonstrate | 83 |
| abstract_inverted_index.effectively | 41 |
| abstract_inverted_index.experiments | 78 |
| abstract_inverted_index.pre-trained | 102, 130 |
| abstract_inverted_index.recognition | 132 |
| abstract_inverted_index.similarity. | 88 |
| abstract_inverted_index.facilitating | 24 |
| abstract_inverted_index.information. | 29 |
| abstract_inverted_index.tokenization | 97 |
| abstract_inverted_index.Additionally, | 89 |
| abstract_inverted_index.conditioning. | 50 |
| abstract_inverted_index.flow-matching | 70 |
| abstract_inverted_index.incorporating | 124 |
| abstract_inverted_index.reconstruction | 65 |
| abstract_inverted_index.text-to-speech | 37 |
| abstract_inverted_index.characteristics | 44 |
| abstract_inverted_index.disentanglement | 25 |
| abstract_inverted_index.self-supervised | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |