Disintegration results for fractal measures and applications to Diophantine approximation Article Swipe
In this paper we prove disintegration results for self-conformal measures and affinely irreducible self-similar measures. The measures appearing in the disintegration resemble self-conformal/self-similar measures for iterated function systems satisfying the strong separation condition. As an application of our results, we prove the following Diophantine statements: 1. Using a result of Pollington and Velani, we show that if $μ$ is a self-conformal measure in $\mathbb{R}$ or an affinely irreducible self-similar measure, then there exists $α>0$ such that for all $β>α$ we have $$μ\left(\left\{\mathbf{x}\in \mathbb{R}^{d}:\max_{1\leq i\leq d}|x_{i}-p_i/q|\leq \frac{1}{q^{\frac{d+1}{d}}(\log q)^β}\textrm{ for i.m. }(p_1,\ldots,p_d,q)\in \mathbb{Z}^{d}\times \mathbb{N}\right\}\right)=0.$$ 2. Using a result of Kleinbock and Weiss, we show that if $μ$ is an affinely irreducible self-similar measure, then $μ$ almost every $\mathbf{x}$ is not a singular vector.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.09599
- https://arxiv.org/pdf/2501.09599
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406549096
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406549096Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.09599Digital Object Identifier
- Title
-
Disintegration results for fractal measures and applications to Diophantine approximationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-16Full publication date if available
- Authors
-
Simon BakerList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.09599Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.09599Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.09599Direct OA link when available
- Concepts
-
Fractal, Diophantine approximation, Diophantine equation, Mathematics, Diophantine set, Applied mathematics, Statistical physics, Mathematical analysis, Discrete mathematics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406549096 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.09599 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.09599 |
| ids.openalex | https://openalex.org/W4406549096 |
| fwci | |
| type | preprint |
| title | Disintegration results for fractal measures and applications to Diophantine approximation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10588 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Mathematical Dynamics and Fractals |
| topics[1].id | https://openalex.org/T12516 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9757999777793884 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Advanced Mathematical Theories and Applications |
| topics[2].id | https://openalex.org/T13234 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9502999782562256 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | advanced mathematical theories |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C40636538 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7805885076522827 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q81392 |
| concepts[0].display_name | Fractal |
| concepts[1].id | https://openalex.org/C102966492 |
| concepts[1].level | 3 |
| concepts[1].score | 0.644371509552002 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1227061 |
| concepts[1].display_name | Diophantine approximation |
| concepts[2].id | https://openalex.org/C206530611 |
| concepts[2].level | 2 |
| concepts[2].score | 0.602832019329071 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q905896 |
| concepts[2].display_name | Diophantine equation |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5242645740509033 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C40621787 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42842841148376465 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16251580 |
| concepts[4].display_name | Diophantine set |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.39291882514953613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C121864883 |
| concepts[6].level | 1 |
| concepts[6].score | 0.36717188358306885 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[6].display_name | Statistical physics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21674421429634094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| concepts[8].id | https://openalex.org/C118615104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20185807347297668 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[8].display_name | Discrete mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19064176082611084 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/fractal |
| keywords[0].score | 0.7805885076522827 |
| keywords[0].display_name | Fractal |
| keywords[1].id | https://openalex.org/keywords/diophantine-approximation |
| keywords[1].score | 0.644371509552002 |
| keywords[1].display_name | Diophantine approximation |
| keywords[2].id | https://openalex.org/keywords/diophantine-equation |
| keywords[2].score | 0.602832019329071 |
| keywords[2].display_name | Diophantine equation |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5242645740509033 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/diophantine-set |
| keywords[4].score | 0.42842841148376465 |
| keywords[4].display_name | Diophantine set |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.39291882514953613 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/statistical-physics |
| keywords[6].score | 0.36717188358306885 |
| keywords[6].display_name | Statistical physics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.21674421429634094 |
| keywords[7].display_name | Mathematical analysis |
| keywords[8].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[8].score | 0.20185807347297668 |
| keywords[8].display_name | Discrete mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.19064176082611084 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.09599 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.09599 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.09599 |
| locations[1].id | doi:10.48550/arxiv.2501.09599 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.09599 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061943510 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0716-6236 |
| authorships[0].author.display_name | Simon Baker |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baker, Simon |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.09599 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Disintegration results for fractal measures and applications to Diophantine approximation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10588 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Mathematical Dynamics and Fractals |
| related_works | https://openalex.org/W2323172212, https://openalex.org/W4249600134, https://openalex.org/W2757989085, https://openalex.org/W2000047385, https://openalex.org/W4391569061, https://openalex.org/W2375671194, https://openalex.org/W4390811435, https://openalex.org/W1192275632, https://openalex.org/W2391619745, https://openalex.org/W2370478068 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.09599 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.09599 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.09599 |
| primary_location.id | pmh:oai:arXiv.org:2501.09599 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.09599 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.09599 |
| publication_date | 2025-01-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 59, 94, 118 |
| abstract_inverted_index.1. | 45 |
| abstract_inverted_index.2. | 92 |
| abstract_inverted_index.As | 33 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 34, 65, 106 |
| abstract_inverted_index.if | 56, 103 |
| abstract_inverted_index.in | 18, 62 |
| abstract_inverted_index.is | 58, 105, 116 |
| abstract_inverted_index.of | 36, 49, 96 |
| abstract_inverted_index.or | 64 |
| abstract_inverted_index.we | 3, 39, 53, 79, 100 |
| abstract_inverted_index.The | 15 |
| abstract_inverted_index.all | 77 |
| abstract_inverted_index.and | 10, 51, 98 |
| abstract_inverted_index.for | 7, 24, 76, 87 |
| abstract_inverted_index.not | 117 |
| abstract_inverted_index.our | 37 |
| abstract_inverted_index.the | 19, 29, 41 |
| abstract_inverted_index.$μ$ | 57, 104, 112 |
| abstract_inverted_index.have | 80 |
| abstract_inverted_index.i.m. | 88 |
| abstract_inverted_index.show | 54, 101 |
| abstract_inverted_index.such | 74 |
| abstract_inverted_index.that | 55, 75, 102 |
| abstract_inverted_index.then | 70, 111 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.Using | 46, 93 |
| abstract_inverted_index.every | 114 |
| abstract_inverted_index.i\leq | 83 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.prove | 4, 40 |
| abstract_inverted_index.there | 71 |
| abstract_inverted_index.Weiss, | 99 |
| abstract_inverted_index.almost | 113 |
| abstract_inverted_index.exists | 72 |
| abstract_inverted_index.result | 48, 95 |
| abstract_inverted_index.strong | 30 |
| abstract_inverted_index.Velani, | 52 |
| abstract_inverted_index.measure | 61 |
| abstract_inverted_index.results | 6 |
| abstract_inverted_index.systems | 27 |
| abstract_inverted_index.vector. | 120 |
| abstract_inverted_index.affinely | 11, 66, 107 |
| abstract_inverted_index.function | 26 |
| abstract_inverted_index.iterated | 25 |
| abstract_inverted_index.measure, | 69, 110 |
| abstract_inverted_index.measures | 9, 16, 23 |
| abstract_inverted_index.resemble | 21 |
| abstract_inverted_index.results, | 38 |
| abstract_inverted_index.singular | 119 |
| abstract_inverted_index.$α>0$ | 73 |
| abstract_inverted_index.Kleinbock | 97 |
| abstract_inverted_index.appearing | 17 |
| abstract_inverted_index.following | 42 |
| abstract_inverted_index.measures. | 14 |
| abstract_inverted_index.$β>α$ | 78 |
| abstract_inverted_index.Pollington | 50 |
| abstract_inverted_index.condition. | 32 |
| abstract_inverted_index.satisfying | 28 |
| abstract_inverted_index.separation | 31 |
| abstract_inverted_index.Diophantine | 43 |
| abstract_inverted_index.application | 35 |
| abstract_inverted_index.irreducible | 12, 67, 108 |
| abstract_inverted_index.statements: | 44 |
| abstract_inverted_index.$\mathbb{R}$ | 63 |
| abstract_inverted_index.$\mathbf{x}$ | 115 |
| abstract_inverted_index.self-similar | 13, 68, 109 |
| abstract_inverted_index.disintegration | 5, 20 |
| abstract_inverted_index.q)^β}\textrm{ | 86 |
| abstract_inverted_index.self-conformal | 8, 60 |
| abstract_inverted_index.d}|x_{i}-p_i/q|\leq | 84 |
| abstract_inverted_index.\mathbb{Z}^{d}\times | 90 |
| abstract_inverted_index.}(p_1,\ldots,p_d,q)\in | 89 |
| abstract_inverted_index.\mathbb{R}^{d}:\max_{1\leq | 82 |
| abstract_inverted_index.self-conformal/self-similar | 22 |
| abstract_inverted_index.$$μ\left(\left\{\mathbf{x}\in | 81 |
| abstract_inverted_index.\mathbb{N}\right\}\right)=0.$$ | 91 |
| abstract_inverted_index.\frac{1}{q^{\frac{d+1}{d}}(\log | 85 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5061943510 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |