Distance-based change point detection for novelty detection in concept-agnostic continual anomaly detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s10844-025-00949-1
Anomaly detection provides an effective decision support capability in several real-world domains. One limitation of conventional approaches is their inability to preserve knowledge as models are constantly updated with recent data, leading to catastrophic forgetting. Continual learning approaches overcome this limitation by providing strategies that provide a trade-off between model stability and plasticity. However, to deal with concept-agnostic scenarios, transitions between tasks/concepts must be detected and provided as auxiliary information to the models. While change point detection methods are a natural fit, the most effective ones for complex and evolving data rely on choosing an appropriate distance measure. However, a fundamental knowledge gap in current research stands in how distance measures for change point detection impact models’ ability to adapt and perform over time as new concepts emerge from evolving data. In this paper, we address this issue by proposing a modular approach to identify transitions in concept-agnostic scenarios and investigating how different distances in change detection affect the predictive performance of anomaly detection models in continual learning scenarios. We perform experiments with different continual learning strategies and compare them with concept-incremental scenarios across multiple real-world datasets. Our key results highlight that it is feasible to perform concept-agnostic learning with a small decline in anomaly detection performance compared to concept-incremental. Moreover, this decline can be mitigated with proper selection of the distance measure for change detection. Finally, our results reveal that even moderately accurate identification of changes can lead to competitive anomaly detection performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10844-025-00949-1
- https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdf
- OA Status
- hybrid
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410983718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410983718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10844-025-00949-1Digital Object Identifier
- Title
-
Distance-based change point detection for novelty detection in concept-agnostic continual anomaly detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-03Full publication date if available
- Authors
-
Collin Coil, Kamil Faber, Bartłomiej Śnieżyński, Roberto CorizzoList of authors in order
- Landing page
-
https://doi.org/10.1007/s10844-025-00949-1Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdfDirect OA link when available
- Concepts
-
Anomaly detection, Change detection, Computer science, Novelty detection, Novelty, Point (geometry), Artificial intelligence, Data mining, Pattern recognition (psychology), Mathematics, Geometry, Theology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410983718 |
|---|---|
| doi | https://doi.org/10.1007/s10844-025-00949-1 |
| ids.doi | https://doi.org/10.1007/s10844-025-00949-1 |
| ids.openalex | https://openalex.org/W4410983718 |
| fwci | 0.0 |
| type | article |
| title | Distance-based change point detection for novelty detection in concept-agnostic continual anomaly detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10400 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Network Security and Intrusion Detection |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3090 |
| apc_paid.value | 2490 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3090 |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8475927114486694 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C203595873 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8379483819007874 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25389927 |
| concepts[1].display_name | Change detection |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.83491450548172 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2778924833 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7278281450271606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7064603 |
| concepts[3].display_name | Novelty detection |
| concepts[4].id | https://openalex.org/C2778738651 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6170775890350342 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16546687 |
| concepts[4].display_name | Novelty |
| concepts[5].id | https://openalex.org/C28719098 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5455510020256042 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[5].display_name | Point (geometry) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48069101572036743 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.39855754375457764 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.34381234645843506 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.08103248476982117 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| concepts[11].id | https://openalex.org/C27206212 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q34178 |
| concepts[11].display_name | Theology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.8475927114486694 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/change-detection |
| keywords[1].score | 0.8379483819007874 |
| keywords[1].display_name | Change detection |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.83491450548172 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/novelty-detection |
| keywords[3].score | 0.7278281450271606 |
| keywords[3].display_name | Novelty detection |
| keywords[4].id | https://openalex.org/keywords/novelty |
| keywords[4].score | 0.6170775890350342 |
| keywords[4].display_name | Novelty |
| keywords[5].id | https://openalex.org/keywords/point |
| keywords[5].score | 0.5455510020256042 |
| keywords[5].display_name | Point (geometry) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.48069101572036743 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.39855754375457764 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.34381234645843506 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.08103248476982117 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s10844-025-00949-1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S36033921 |
| locations[0].source.issn | 0925-9902, 1573-7675 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0925-9902 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Intelligent Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Intelligent Information Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s10844-025-00949-1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093454296 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-3963-4721 |
| authorships[0].author.display_name | Collin Coil |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Collin Coil |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008887467 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4221-0017 |
| authorships[1].author.display_name | Kamil Faber |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kamil Faber |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067892569 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4206-9052 |
| authorships[2].author.display_name | Bartłomiej Śnieżyński |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bartlomiej Sniezynski |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010914442 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8366-6059 |
| authorships[3].author.display_name | Roberto Corizzo |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Roberto Corizzo |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Distance-based change point detection for novelty detection in concept-agnostic continual anomaly detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2064636555, https://openalex.org/W2585503716, https://openalex.org/W1939982668, https://openalex.org/W2105014086, https://openalex.org/W2076090200, https://openalex.org/W3025682415, https://openalex.org/W2081173909, https://openalex.org/W4389009659, https://openalex.org/W198251434, https://openalex.org/W4312933423 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10844-025-00949-1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S36033921 |
| best_oa_location.source.issn | 0925-9902, 1573-7675 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0925-9902 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Intelligent Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Intelligent Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10844-025-00949-1 |
| primary_location.id | doi:10.1007/s10844-025-00949-1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S36033921 |
| primary_location.source.issn | 0925-9902, 1573-7675 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0925-9902 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Intelligent Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10844-025-00949-1.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Intelligent Information Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s10844-025-00949-1 |
| publication_date | 2025-06-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4388426023, https://openalex.org/W4401508754, https://openalex.org/W2515822248, https://openalex.org/W3208097639, https://openalex.org/W4254182148, https://openalex.org/W4402915766, https://openalex.org/W3091958244, https://openalex.org/W4402618655, https://openalex.org/W4399714814, https://openalex.org/W3205303036, https://openalex.org/W1976526581, https://openalex.org/W3042642865, https://openalex.org/W3167553563, https://openalex.org/W4394596018, https://openalex.org/W4206356216, https://openalex.org/W4312536888, https://openalex.org/W4378530079, https://openalex.org/W4391096909, https://openalex.org/W4392902599, https://openalex.org/W2525449401, https://openalex.org/W3162623502, https://openalex.org/W2047287351, https://openalex.org/W2337344967, https://openalex.org/W2257742059, https://openalex.org/W4238459806, https://openalex.org/W2121044470, https://openalex.org/W1975684011, https://openalex.org/W2805502496, https://openalex.org/W1986332411, https://openalex.org/W4391774404, https://openalex.org/W4304091765, https://openalex.org/W3128465814, https://openalex.org/W2296719434, https://openalex.org/W4393154285, https://openalex.org/W2963072899, https://openalex.org/W2150427470, https://openalex.org/W2296509296, https://openalex.org/W3040266635, https://openalex.org/W2788388592, https://openalex.org/W2754791538, https://openalex.org/W4399212077, https://openalex.org/W2105497548, https://openalex.org/W3004442222, https://openalex.org/W2789828921, https://openalex.org/W2062118960, https://openalex.org/W4396558173, https://openalex.org/W4402604100, https://openalex.org/W2099940443, https://openalex.org/W4214520787, https://openalex.org/W2936845163, https://openalex.org/W2990138404, https://openalex.org/W3135550350, https://openalex.org/W3098561233 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 47, 80, 100, 141, 201 |
| abstract_inverted_index.In | 132 |
| abstract_inverted_index.We | 170 |
| abstract_inverted_index.an | 4, 95 |
| abstract_inverted_index.as | 24, 68, 125 |
| abstract_inverted_index.be | 64, 215 |
| abstract_inverted_index.by | 42, 139 |
| abstract_inverted_index.in | 9, 104, 108, 147, 155, 166, 204 |
| abstract_inverted_index.is | 18, 194 |
| abstract_inverted_index.it | 193 |
| abstract_inverted_index.of | 15, 162, 220, 236 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.to | 21, 33, 55, 71, 119, 144, 196, 209, 240 |
| abstract_inverted_index.we | 135 |
| abstract_inverted_index.One | 13 |
| abstract_inverted_index.Our | 188 |
| abstract_inverted_index.and | 52, 66, 89, 121, 150, 178 |
| abstract_inverted_index.are | 26, 79 |
| abstract_inverted_index.can | 214, 238 |
| abstract_inverted_index.for | 87, 112, 224 |
| abstract_inverted_index.gap | 103 |
| abstract_inverted_index.how | 109, 152 |
| abstract_inverted_index.key | 189 |
| abstract_inverted_index.new | 126 |
| abstract_inverted_index.our | 228 |
| abstract_inverted_index.the | 72, 83, 159, 221 |
| abstract_inverted_index.data | 91 |
| abstract_inverted_index.deal | 56 |
| abstract_inverted_index.even | 232 |
| abstract_inverted_index.fit, | 82 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.lead | 239 |
| abstract_inverted_index.most | 84 |
| abstract_inverted_index.must | 63 |
| abstract_inverted_index.ones | 86 |
| abstract_inverted_index.over | 123 |
| abstract_inverted_index.rely | 92 |
| abstract_inverted_index.that | 45, 192, 231 |
| abstract_inverted_index.them | 180 |
| abstract_inverted_index.this | 40, 133, 137, 212 |
| abstract_inverted_index.time | 124 |
| abstract_inverted_index.with | 29, 57, 173, 181, 200, 217 |
| abstract_inverted_index.While | 74 |
| abstract_inverted_index.adapt | 120 |
| abstract_inverted_index.data, | 31 |
| abstract_inverted_index.data. | 131 |
| abstract_inverted_index.issue | 138 |
| abstract_inverted_index.model | 50 |
| abstract_inverted_index.point | 76, 114 |
| abstract_inverted_index.small | 202 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.across | 184 |
| abstract_inverted_index.affect | 158 |
| abstract_inverted_index.change | 75, 113, 156, 225 |
| abstract_inverted_index.emerge | 128 |
| abstract_inverted_index.impact | 116 |
| abstract_inverted_index.models | 25, 165 |
| abstract_inverted_index.paper, | 134 |
| abstract_inverted_index.proper | 218 |
| abstract_inverted_index.recent | 30 |
| abstract_inverted_index.reveal | 230 |
| abstract_inverted_index.stands | 107 |
| abstract_inverted_index.Anomaly | 1 |
| abstract_inverted_index.ability | 118 |
| abstract_inverted_index.address | 136 |
| abstract_inverted_index.anomaly | 163, 205, 242 |
| abstract_inverted_index.between | 49, 61 |
| abstract_inverted_index.changes | 237 |
| abstract_inverted_index.compare | 179 |
| abstract_inverted_index.complex | 88 |
| abstract_inverted_index.current | 105 |
| abstract_inverted_index.decline | 203, 213 |
| abstract_inverted_index.leading | 32 |
| abstract_inverted_index.measure | 223 |
| abstract_inverted_index.methods | 78 |
| abstract_inverted_index.models. | 73 |
| abstract_inverted_index.modular | 142 |
| abstract_inverted_index.natural | 81 |
| abstract_inverted_index.perform | 122, 171, 197 |
| abstract_inverted_index.provide | 46 |
| abstract_inverted_index.results | 190, 229 |
| abstract_inverted_index.several | 10 |
| abstract_inverted_index.support | 7 |
| abstract_inverted_index.updated | 28 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 227 |
| abstract_inverted_index.However, | 54, 99 |
| abstract_inverted_index.accurate | 234 |
| abstract_inverted_index.approach | 143 |
| abstract_inverted_index.choosing | 94 |
| abstract_inverted_index.compared | 208 |
| abstract_inverted_index.concepts | 127 |
| abstract_inverted_index.decision | 6 |
| abstract_inverted_index.detected | 65 |
| abstract_inverted_index.distance | 97, 110, 222 |
| abstract_inverted_index.domains. | 12 |
| abstract_inverted_index.evolving | 90, 130 |
| abstract_inverted_index.feasible | 195 |
| abstract_inverted_index.identify | 145 |
| abstract_inverted_index.learning | 37, 168, 176, 199 |
| abstract_inverted_index.measure. | 98 |
| abstract_inverted_index.measures | 111 |
| abstract_inverted_index.multiple | 185 |
| abstract_inverted_index.overcome | 39 |
| abstract_inverted_index.preserve | 22 |
| abstract_inverted_index.provided | 67 |
| abstract_inverted_index.provides | 3 |
| abstract_inverted_index.research | 106 |
| abstract_inverted_index.Continual | 36 |
| abstract_inverted_index.Moreover, | 211 |
| abstract_inverted_index.auxiliary | 69 |
| abstract_inverted_index.continual | 167, 175 |
| abstract_inverted_index.datasets. | 187 |
| abstract_inverted_index.detection | 2, 77, 115, 157, 164, 206, 243 |
| abstract_inverted_index.different | 153, 174 |
| abstract_inverted_index.distances | 154 |
| abstract_inverted_index.effective | 5, 85 |
| abstract_inverted_index.highlight | 191 |
| abstract_inverted_index.inability | 20 |
| abstract_inverted_index.knowledge | 23, 102 |
| abstract_inverted_index.mitigated | 216 |
| abstract_inverted_index.models’ | 117 |
| abstract_inverted_index.proposing | 140 |
| abstract_inverted_index.providing | 43 |
| abstract_inverted_index.scenarios | 149, 183 |
| abstract_inverted_index.selection | 219 |
| abstract_inverted_index.stability | 51 |
| abstract_inverted_index.trade-off | 48 |
| abstract_inverted_index.approaches | 17, 38 |
| abstract_inverted_index.capability | 8 |
| abstract_inverted_index.constantly | 27 |
| abstract_inverted_index.detection. | 226 |
| abstract_inverted_index.limitation | 14, 41 |
| abstract_inverted_index.moderately | 233 |
| abstract_inverted_index.predictive | 160 |
| abstract_inverted_index.real-world | 11, 186 |
| abstract_inverted_index.scenarios, | 59 |
| abstract_inverted_index.scenarios. | 169 |
| abstract_inverted_index.strategies | 44, 177 |
| abstract_inverted_index.appropriate | 96 |
| abstract_inverted_index.competitive | 241 |
| abstract_inverted_index.experiments | 172 |
| abstract_inverted_index.forgetting. | 35 |
| abstract_inverted_index.fundamental | 101 |
| abstract_inverted_index.information | 70 |
| abstract_inverted_index.performance | 161, 207 |
| abstract_inverted_index.plasticity. | 53 |
| abstract_inverted_index.transitions | 60, 146 |
| abstract_inverted_index.catastrophic | 34 |
| abstract_inverted_index.conventional | 16 |
| abstract_inverted_index.performance. | 244 |
| abstract_inverted_index.investigating | 151 |
| abstract_inverted_index.identification | 235 |
| abstract_inverted_index.tasks/concepts | 62 |
| abstract_inverted_index.concept-agnostic | 58, 148, 198 |
| abstract_inverted_index.concept-incremental | 182 |
| abstract_inverted_index.concept-incremental. | 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.08693612 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |