Distributed Koopman Learning using Partial Trajectories for Control Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.07212
This paper proposes a distributed data-driven framework for dynamics learning, termed distributed deep Koopman learning using partial trajectories (DDKL-PT). In this framework, each agent in a multi-agent system is assigned a partial trajectory offline and locally approximates the unknown dynamics using a deep neural network within the Koopman operator framework. By exchanging local estimated dynamics rather than training data, agents achieve consensus on a global dynamics model without sharing their private training trajectories. Simulation studies on a surface vehicle demonstrate that DDKL-PT attains consensus with respect to the learned dynamics, with each agent achieving reasonably small approximation errors over the testing data. Furthermore, a model predictive control scheme is developed by integrating the learned Koopman dynamics with known kinematic relations. Results on goal-tracking and station-keeping tasks support that the distributedly learned dynamics are sufficiently accurate for model-based optimal control.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.07212
- https://arxiv.org/pdf/2412.07212
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405255164
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405255164Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.07212Digital Object Identifier
- Title
-
Distributed Koopman Learning using Partial Trajectories for ControlWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-10Full publication date if available
- Authors
-
Wenjian Hao, Zehui Lu, Devesh Upadhyay, Shaoshuai MouList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.07212Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.07212Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.07212Direct OA link when available
- Concepts
-
Computer science, Algorithm, Control (management), Artificial intelligence, Deep learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405255164 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.07212 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.07212 |
| ids.openalex | https://openalex.org/W4405255164 |
| fwci | |
| type | preprint |
| title | Distributed Koopman Learning using Partial Trajectories for Control |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7562999725341797 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5643995404243469 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5215808749198914 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C2775924081 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5053256154060364 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[2].display_name | Control (management) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4465835690498352 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43961483240127563 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5643995404243469 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5215808749198914 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/control |
| keywords[2].score | 0.5053256154060364 |
| keywords[2].display_name | Control (management) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4465835690498352 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.43961483240127563 |
| keywords[4].display_name | Deep learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.07212 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.07212 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.07212 |
| locations[1].id | doi:10.48550/arxiv.2412.07212 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.07212 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030939982 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenjian Hao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao, Wenjian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018784148 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7312-7075 |
| authorships[1].author.display_name | Zehui Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lu, Zehui |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029516882 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3758-0585 |
| authorships[2].author.display_name | Devesh Upadhyay |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Upadhyay, Devesh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070733769 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3698-4238 |
| authorships[3].author.display_name | Shaoshuai Mou |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mou, Shaoshuai |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.07212 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-12T00:00:00 |
| display_name | Distributed Koopman Learning using Partial Trajectories for Control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7562999725341797 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W3086377361 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.07212 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.07212 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.07212 |
| primary_location.id | pmh:oai:arXiv.org:2412.07212 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.07212 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.07212 |
| publication_date | 2024-12-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 25, 30, 41, 63, 76, 103 |
| abstract_inverted_index.By | 50 |
| abstract_inverted_index.In | 19 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 24 |
| abstract_inverted_index.is | 28, 108 |
| abstract_inverted_index.on | 62, 75, 121 |
| abstract_inverted_index.to | 86 |
| abstract_inverted_index.and | 34, 123 |
| abstract_inverted_index.are | 132 |
| abstract_inverted_index.for | 7, 135 |
| abstract_inverted_index.the | 37, 46, 87, 99, 112, 128 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 12, 42 |
| abstract_inverted_index.each | 22, 91 |
| abstract_inverted_index.over | 98 |
| abstract_inverted_index.than | 56 |
| abstract_inverted_index.that | 80, 127 |
| abstract_inverted_index.this | 20 |
| abstract_inverted_index.with | 84, 90, 116 |
| abstract_inverted_index.agent | 23, 92 |
| abstract_inverted_index.data, | 58 |
| abstract_inverted_index.data. | 101 |
| abstract_inverted_index.known | 117 |
| abstract_inverted_index.local | 52 |
| abstract_inverted_index.model | 66, 104 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.small | 95 |
| abstract_inverted_index.tasks | 125 |
| abstract_inverted_index.their | 69 |
| abstract_inverted_index.using | 15, 40 |
| abstract_inverted_index.agents | 59 |
| abstract_inverted_index.errors | 97 |
| abstract_inverted_index.global | 64 |
| abstract_inverted_index.neural | 43 |
| abstract_inverted_index.rather | 55 |
| abstract_inverted_index.scheme | 107 |
| abstract_inverted_index.system | 27 |
| abstract_inverted_index.termed | 10 |
| abstract_inverted_index.within | 45 |
| abstract_inverted_index.DDKL-PT | 81 |
| abstract_inverted_index.Koopman | 13, 47, 114 |
| abstract_inverted_index.Results | 120 |
| abstract_inverted_index.achieve | 60 |
| abstract_inverted_index.attains | 82 |
| abstract_inverted_index.control | 106 |
| abstract_inverted_index.learned | 88, 113, 130 |
| abstract_inverted_index.locally | 35 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.offline | 33 |
| abstract_inverted_index.optimal | 137 |
| abstract_inverted_index.partial | 16, 31 |
| abstract_inverted_index.private | 70 |
| abstract_inverted_index.respect | 85 |
| abstract_inverted_index.sharing | 68 |
| abstract_inverted_index.studies | 74 |
| abstract_inverted_index.support | 126 |
| abstract_inverted_index.surface | 77 |
| abstract_inverted_index.testing | 100 |
| abstract_inverted_index.unknown | 38 |
| abstract_inverted_index.vehicle | 78 |
| abstract_inverted_index.without | 67 |
| abstract_inverted_index.accurate | 134 |
| abstract_inverted_index.assigned | 29 |
| abstract_inverted_index.control. | 138 |
| abstract_inverted_index.dynamics | 8, 39, 54, 65, 115, 131 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.operator | 48 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.training | 57, 71 |
| abstract_inverted_index.achieving | 93 |
| abstract_inverted_index.consensus | 61, 83 |
| abstract_inverted_index.developed | 109 |
| abstract_inverted_index.dynamics, | 89 |
| abstract_inverted_index.estimated | 53 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.kinematic | 118 |
| abstract_inverted_index.learning, | 9 |
| abstract_inverted_index.(DDKL-PT). | 18 |
| abstract_inverted_index.Simulation | 73 |
| abstract_inverted_index.exchanging | 51 |
| abstract_inverted_index.framework, | 21 |
| abstract_inverted_index.framework. | 49 |
| abstract_inverted_index.predictive | 105 |
| abstract_inverted_index.reasonably | 94 |
| abstract_inverted_index.relations. | 119 |
| abstract_inverted_index.trajectory | 32 |
| abstract_inverted_index.data-driven | 5 |
| abstract_inverted_index.demonstrate | 79 |
| abstract_inverted_index.distributed | 4, 11 |
| abstract_inverted_index.integrating | 111 |
| abstract_inverted_index.model-based | 136 |
| abstract_inverted_index.multi-agent | 26 |
| abstract_inverted_index.Furthermore, | 102 |
| abstract_inverted_index.approximates | 36 |
| abstract_inverted_index.sufficiently | 133 |
| abstract_inverted_index.trajectories | 17 |
| abstract_inverted_index.approximation | 96 |
| abstract_inverted_index.distributedly | 129 |
| abstract_inverted_index.goal-tracking | 122 |
| abstract_inverted_index.trajectories. | 72 |
| abstract_inverted_index.station-keeping | 124 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |