DISTRIBUTED LAG MODELS FOR ESTIMATING ACUTE EFFECTS OF MIXED ENVIRONMENTAL EXPOSURES IN THE CASE-CROSSOVER DESIGN Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.10.30.25339173
We present a Bayesian modeling framework designed to estimate the immediate effects of combined environmental exposures on suicide risk within a case-crossover design. Our method addresses a limitation observed in current distributed lag modeling approaches for multiple environmental exposures, which primarily focus on cohort or case-control data rather than casecrossover design. We utilize sparsity-enforcing spike-and-slab priors for variable selection, allowing the identification of significant exposures linked to the health outcome. To address clustered observations, we integrate random effects into the model. Additionally, we enhance computational efficiency and reduce dimensionality by implementing cubic polynomial reduction on the distributed lag surface. In a simulation study comparing our dimension reduction approach with a method estimating full model parameters without dimension reduction, we evaluated two referent schemes (unidirectional and bidirectional). The results demonstrate that our strategy, incorporating dimension reduction, outperforms full model parameter estimation in terms of false discovery rate, power, and mean squared error. We applied our framework to real-world data examining the association between a mixture of ambient environmental exposures and suicide risk in Utah.
Related Topics
- Type
- article
- Landing Page
- https://doi.org/10.1101/2025.10.30.25339173
- https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdf
- OA Status
- green
- References
- 37
- OpenAlex ID
- https://openalex.org/W4415781462
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415781462Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.10.30.25339173Digital Object Identifier
- Title
-
DISTRIBUTED LAG MODELS FOR ESTIMATING ACUTE EFFECTS OF MIXED ENVIRONMENTAL EXPOSURES IN THE CASE-CROSSOVER DESIGNWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-02Full publication date if available
- Authors
-
Linda Amoafo, Amanda V. Bakian, Yizhen Xu, Yong ZhangList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.10.30.25339173Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415781462 |
|---|---|
| doi | https://doi.org/10.1101/2025.10.30.25339173 |
| ids.doi | https://doi.org/10.1101/2025.10.30.25339173 |
| ids.openalex | https://openalex.org/W4415781462 |
| fwci | |
| type | article |
| title | DISTRIBUTED LAG MODELS FOR ESTIMATING ACUTE EFFECTS OF MIXED ENVIRONMENTAL EXPOSURES IN THE CASE-CROSSOVER DESIGN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.1101/2025.10.30.25339173 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.10.30.25339173 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5089622457 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3306-8445 |
| authorships[0].author.display_name | Linda Amoafo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Linda Amoafo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069915723 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6805-1160 |
| authorships[1].author.display_name | Amanda V. Bakian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amanda Bakian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101865568 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4650-5851 |
| authorships[2].author.display_name | Yizhen Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yizhen Xu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100419743 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8835-7749 |
| authorships[3].author.display_name | Yong Zhang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | yue zhang |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-03T00:00:00 |
| display_name | DISTRIBUTED LAG MODELS FOR ESTIMATING ACUTE EFFECTS OF MIXED ENVIRONMENTAL EXPOSURES IN THE CASE-CROSSOVER DESIGN |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.10.30.25339173 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.10.30.25339173 |
| primary_location.id | doi:10.1101/2025.10.30.25339173 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2025/11/02/2025.10.30.25339173.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.10.30.25339173 |
| publication_date | 2025-11-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1995047010, https://openalex.org/W45374770, https://openalex.org/W2165324154, https://openalex.org/W2727722179, https://openalex.org/W2462794150, https://openalex.org/W2884325185, https://openalex.org/W2162547226, https://openalex.org/W2878485682, https://openalex.org/W3118598290, https://openalex.org/W2951551904, https://openalex.org/W3126310407, https://openalex.org/W2460142007, https://openalex.org/W2954586028, https://openalex.org/W3090112529, https://openalex.org/W4294826717, https://openalex.org/W2006203329, https://openalex.org/W2582643776, https://openalex.org/W2148534890, https://openalex.org/W4390571005, https://openalex.org/W2744554114, https://openalex.org/W1904997767, https://openalex.org/W3184305789, https://openalex.org/W2058406524, https://openalex.org/W2136527705, https://openalex.org/W4239353198, https://openalex.org/W3093221544, https://openalex.org/W2962823720, https://openalex.org/W2033873777, https://openalex.org/W2238346964, https://openalex.org/W1978134315, https://openalex.org/W2086650627, https://openalex.org/W2255668007, https://openalex.org/W2978799003, https://openalex.org/W2620635803, https://openalex.org/W2562053279, https://openalex.org/W3194007998, https://openalex.org/W2124129856 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 2, 20, 26, 100, 109, 162 |
| abstract_inverted_index.In | 99 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.We | 0, 51, 151 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.in | 29, 140, 171 |
| abstract_inverted_index.of | 12, 62, 142, 164 |
| abstract_inverted_index.on | 16, 42, 94 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 7, 66, 155 |
| abstract_inverted_index.we | 74, 82, 118 |
| abstract_inverted_index.Our | 23 |
| abstract_inverted_index.The | 126 |
| abstract_inverted_index.and | 86, 124, 147, 168 |
| abstract_inverted_index.for | 35, 56 |
| abstract_inverted_index.lag | 32, 97 |
| abstract_inverted_index.our | 104, 130, 153 |
| abstract_inverted_index.the | 9, 60, 67, 79, 95, 159 |
| abstract_inverted_index.two | 120 |
| abstract_inverted_index.data | 46, 157 |
| abstract_inverted_index.full | 112, 136 |
| abstract_inverted_index.into | 78 |
| abstract_inverted_index.mean | 148 |
| abstract_inverted_index.risk | 18, 170 |
| abstract_inverted_index.than | 48 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.with | 108 |
| abstract_inverted_index.Utah. | 172 |
| abstract_inverted_index.cubic | 91 |
| abstract_inverted_index.false | 143 |
| abstract_inverted_index.focus | 41 |
| abstract_inverted_index.model | 113, 137 |
| abstract_inverted_index.rate, | 145 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.terms | 141 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.cohort | 43 |
| abstract_inverted_index.error. | 150 |
| abstract_inverted_index.health | 68 |
| abstract_inverted_index.linked | 65 |
| abstract_inverted_index.method | 24, 110 |
| abstract_inverted_index.model. | 80 |
| abstract_inverted_index.power, | 146 |
| abstract_inverted_index.priors | 55 |
| abstract_inverted_index.random | 76 |
| abstract_inverted_index.rather | 47 |
| abstract_inverted_index.reduce | 87 |
| abstract_inverted_index.within | 19 |
| abstract_inverted_index.address | 71 |
| abstract_inverted_index.ambient | 165 |
| abstract_inverted_index.applied | 152 |
| abstract_inverted_index.between | 161 |
| abstract_inverted_index.current | 30 |
| abstract_inverted_index.design. | 22, 50 |
| abstract_inverted_index.effects | 11, 77 |
| abstract_inverted_index.enhance | 83 |
| abstract_inverted_index.mixture | 163 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.results | 127 |
| abstract_inverted_index.schemes | 122 |
| abstract_inverted_index.squared | 149 |
| abstract_inverted_index.suicide | 17, 169 |
| abstract_inverted_index.utilize | 52 |
| abstract_inverted_index.without | 115 |
| abstract_inverted_index.Bayesian | 3 |
| abstract_inverted_index.allowing | 59 |
| abstract_inverted_index.approach | 107 |
| abstract_inverted_index.combined | 13 |
| abstract_inverted_index.designed | 6 |
| abstract_inverted_index.estimate | 8 |
| abstract_inverted_index.modeling | 4, 33 |
| abstract_inverted_index.multiple | 36 |
| abstract_inverted_index.observed | 28 |
| abstract_inverted_index.outcome. | 69 |
| abstract_inverted_index.referent | 121 |
| abstract_inverted_index.surface. | 98 |
| abstract_inverted_index.variable | 57 |
| abstract_inverted_index.addresses | 25 |
| abstract_inverted_index.clustered | 72 |
| abstract_inverted_index.comparing | 103 |
| abstract_inverted_index.dimension | 105, 116, 133 |
| abstract_inverted_index.discovery | 144 |
| abstract_inverted_index.evaluated | 119 |
| abstract_inverted_index.examining | 158 |
| abstract_inverted_index.exposures | 15, 64, 167 |
| abstract_inverted_index.framework | 5, 154 |
| abstract_inverted_index.immediate | 10 |
| abstract_inverted_index.integrate | 75 |
| abstract_inverted_index.parameter | 138 |
| abstract_inverted_index.primarily | 40 |
| abstract_inverted_index.reduction | 93, 106 |
| abstract_inverted_index.strategy, | 131 |
| abstract_inverted_index.approaches | 34 |
| abstract_inverted_index.efficiency | 85 |
| abstract_inverted_index.estimating | 111 |
| abstract_inverted_index.estimation | 139 |
| abstract_inverted_index.exposures, | 38 |
| abstract_inverted_index.limitation | 27 |
| abstract_inverted_index.parameters | 114 |
| abstract_inverted_index.polynomial | 92 |
| abstract_inverted_index.real-world | 156 |
| abstract_inverted_index.reduction, | 117, 134 |
| abstract_inverted_index.selection, | 58 |
| abstract_inverted_index.simulation | 101 |
| abstract_inverted_index.association | 160 |
| abstract_inverted_index.demonstrate | 128 |
| abstract_inverted_index.distributed | 31, 96 |
| abstract_inverted_index.outperforms | 135 |
| abstract_inverted_index.significant | 63 |
| abstract_inverted_index.case-control | 45 |
| abstract_inverted_index.implementing | 90 |
| abstract_inverted_index.Additionally, | 81 |
| abstract_inverted_index.casecrossover | 49 |
| abstract_inverted_index.computational | 84 |
| abstract_inverted_index.environmental | 14, 37, 166 |
| abstract_inverted_index.incorporating | 132 |
| abstract_inverted_index.observations, | 73 |
| abstract_inverted_index.case-crossover | 21 |
| abstract_inverted_index.dimensionality | 88 |
| abstract_inverted_index.identification | 61 |
| abstract_inverted_index.spike-and-slab | 54 |
| abstract_inverted_index.(unidirectional | 123 |
| abstract_inverted_index.bidirectional). | 125 |
| abstract_inverted_index.sparsity-enforcing | 53 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |